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EXECUTIVE SUMMARY 

Agricultural and development policies influence ecological patterns and processes across 

both space and time. In response to policy-driven changes to landscapes, policy makers 

initiated conservation programs such as the Conservation Reserve Program (CRP) to 

ameliorate the impacts of modern agricultural practices on private lands in the U.S. The CRP 

was established in 1985 to promote soil conservation through replacing highly erodible 

croplands with perennial and annual vegetation cover, but it also resulted in ecological 

benefits such as providing habitat for species of conservation concern. The lesser prairie-

chicken (Tympanuchus pallidicinctus; hereafter “LPC”) is a declining species of North 

American prairie grouse that has benefited in recent decades from the enrollment of CRP in 

the Southern Great Plains. Despite the potential of CRP to influence lesser prairie-chicken 

conservation, empirical evidence of how individuals and populations function in relation to 

spatially explicit CRP cover is lacking. We sought to understand how LPCs responded to 

CRP cover across multiple spatial extents through the integrated use of different datasets 

associated with LPC occurrences and movement patterns. Specifically, we determined the 

responses of LPCs to CRP cover at three spatial extents: distribution level, county level, and 

pasture level. Within this hierarchical framework, our objectives were to 1) determine how 

CRP influences LPC habitat suitability through integration of disparate occurrence datasets 

throughout the LPC distribution, 2) determine the potential of areas of high conservation 

value for LPCs on secondary species of management value (i.e., upland gamebirds) during 

changing environmental conditions, 3) determine how mid-contract management (i.e., 

grazing) of CRP influences movement patterns of LPCs, and 4) determine how CRP 

influences nighttime roost site selection and movement patterns to roost sites. With regard to 

species distribution models across the LPC’s current range, all models (except one with a 

roadside bias) indicated a positive relationship between LPC presence and CRP across all 

examined scales, indicating this relationship was scale-invariant and that CRP was a primary 

driver of space use. Furthermore, at a county extent, CRP remained a primary factor 

influencing environmental suitability for LPCs when accounting for changing vegetation 

conditions associated with annual precipitation events. When CRP was present on the 

landscape, the probability of suitability for the LPC was 74.27% (SE = 0.001), 74.68% (SE = 

0.002), and 75.05% (SE = 0.006) during 2013, 2014, and 2015, respectively. Conversely, 

areas not comprised of CRP cover had a probability of suitability for LPCs of 27.58% (SE = 

0.04), 29.30% (SE = 0.04), and 23.73% (0.06) during 2013, 2014, and 2015, respectively. 

However, CRP was not an influential variable in predicting probability of suitability for other 

game species (the northern bobwhite [Colinus virginianus] and scaled quail (Callipepla 

squamata), and niche similarities were low between quail and LPC distribution models. This 

suggests that the use of northern bobwhite and scaled quail management as an umbrella 

approach to help benefit LPC conservation is likely not warranted. Additionally, practices 

such as managed grazing associated with mid-contract CRP management did not 

significantly influence vegetation or LPC movement patterns associated with CRP patches 

experiencing mid-contract management. Finally, we provide the first evidence of CRP 

influencing nocturnal roost site selection and movement patterns to roost sites, filling a 

knowledge gap during this period in the LPC’s life-history. Specifically, vegetation was more 

important to roost site selection than the influence of anthropogenic features. Of the 

vegetation variables influencing roost site selection, LPC located roost sites closer to CRP, 

their lek of capture, croplands, and mixed grass prairie than would be expected at random. Of 
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these, CRP was the most influential variable influencing roost site selection. Moreover, our 

models indicated that as movements to the roost site contained more CRP along the step 

length, movements decreased whereas movements to the roost were greater when a roost site 

was in CRP as opposed to outside CRP. This suggests that individuals located outside of 

CRP before sunset are moving longer distances to get to roost sites in CRP, but if they were 

already located in CRP before moving to the roost site (i.e., 100% of their movement to the 

roost was in CRP), they moved significantly less to get to their roost within CRP. 

Our results, along with a growing body of literature, suggest that patches of CRP are playing 

a key ecological role in maintaining useable space throughout the LPC’s distribution. Based 

on our results, a list of conservation recommendations and future directions are outlined to 

help provide guidance to the NRCS for LPC conservation.  

BACKGROUND 

Agricultural and development policies influence ecological patterns and processes across 

both space and time, and can play an important role in the conservation of organisms within 

landscapes that are impacted by fragmentation and anthropogenic disturbance (Meyer 1995, 

Donald and Evans 2006, Tanner and Fuhlendorf 2018). Within the Great Plains of North 

America, human-influenced land cover change over the past two centuries has transformed 

previously extensive open grasslands into a mosaic of irrigated croplands (Drummond et al. 

2012), woodlands (Archer 1994, Engle et al. 1995), remnant grasslands, and industrial 

infrastructure associated with energy development. A culmination of these human-influenced 

land cover changes have resulted in North American grasslands being considered some of the 

most altered and threatened ecosystems (Samson and Knopf 1994), with associated 

populations of plants and wildlife experiencing distribution-wide declines due to these trends 

(Knopf 1994, Fuhlendorf and Engle 2001, Brennan and Kuvlesky 2005, Ratajczak et al. 

2012). 

To address concerns about the loss of grasslands and their historical ecological patterns and 

processes, policy makers initiated conservation programs to ameliorate the impacts of 

modern agricultural practices on private lands. The Conservation Reserve Program (CRP) is 

one such program that was established in 1985 to help promote soil conservation through 

replacing highly erodible croplands with perennial and annual vegetation cover. With 

approximately 9.06 million ha enrolled within the United States as of February 2019, the 

CRP has significantly altered land cover patterns throughout the Great Plains (Tanner and 

Fuhlendorf 2018) and has resulted in providing ecological benefits to a host of species of 

conservation concern (Delisle and Savidge 1997, Hagen et al. 2016, Sullins et al. 2019).  

One species that has benefited from the CRP is the lesser prairie-chicken (Tympanuchus 

pallidicinctus; hereafter “LPC”), a North American prairie grouse that has experienced 

population declines and a reduction in its distribution for decades (Silvy 2006). Land enrolled 

in the CRP has been identified as critical to LPC habitat throughout portions of its 

distribution due to the influence of habitat heterogeneity and grassland connectivity 

(Jarnevich and Laubhan 2011; Spencer et al. 2017; Sullins et al. 2018). Despite the potential 

of CRP to influence lesser prairie-chicken conservation, empirical evidence of how 
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individuals and populations function in relation to spatially explicit CRP cover is widely 

lacking. This is particularly true for understudied periods of the LPC’s life-history (i.e., 

roosting locations). Furthermore, the spatial scale at which we assess LPC responses to CRP 

enrollment may influence our understanding of these relationships if scale mismatch occurs 

in which relationships vary across spatial and temporal scales. Both the spatial organization 

and management practices (i.e., mid-contract management such as prescribed grazing, 

shallow disking and interseeding, etc.) associated with CRP can be highly dynamic and thus 

a multi-scale assessment of how LPCs respond to CRP on the landscape could help further 

corroborate the benefits of CRP enrollment to LPC populations. 

Finally, coupled with spatial variability in CRP enrollment and practices, is the temporal 

variability associated with vegetation within CRP cover due to changing environmental 

conditions. Precipitation and temperature conditions have direct impacts on vegetation 

dynamics such as influencing species richness and the total cover of grass and forbs within 

ecosystems (Collins et al. 1987). Such dynamics in habitat quality could influence how or 

when LPCs use CRP areas, in which these areas may be more vital to LPC population 

stability during periods of extreme drought (Ross et al. 2016). Thus, a temporally variable 

assessment of CRP benefits to LPCs may help highlight how these relationships change with 

variable rangeland conditions. 

In this study, we sought to understand how LPCs responded to CRP cover across multiple 

spatial extents through the integrated use of different datasets associated with LPC 

occurrences and movement patterns. Specifically, we determined the responses of LPCs to 

CRP cover at three spatial extents: distribution level, county level, and pasture level. Within 

this hierarchical framework, our objectives were to 1) determine how CRP influences LPC 

habitat suitability through integration of disparate occurrence datasets throughout the LPC 

distribution, 2) determine the potential of areas of high conservation value for LPCs on 

secondary species of management value (i.e., upland gamebirds) during changing 

environmental conditions, 3) determine how mid-contract management (i.e., grazing) of CRP 

influences movement patterns of LPCs, and 4) determine how CRP influences nighttime 

roost site selection and movement patterns to roost sites. For simplicity, we have separated 

the Methods and Results sections by each objective rather than attempting to coalesce all 

information into a single Methods and Results section.  

OBJECTIVE 1 – Determine how CRP influences LPC habitat suitability through 

integration of disparate occurrence datasets throughout the LPC distribution 

METHODS 

Location Data 

Our aerial survey LPC lek location data were compiled by the Western Association of Fish 

and Wildlife Agencies (WAFWA) from 2012 – 2014 (McDonald et al. 2014). These data 

were collected by West Ecosystems Technology, Incorporated (Cheyenne, Wyoming, USA) 

using transect, helicopter-based surveys to locate leks across the LPC’s distribution. Two 

observers sat in the rear left and right seats and a third observer in the front left seat of the 
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helicopter during surveys. Transects were flown 25 m above ground at 60 km per hour from 

sunrise until approximately 2.5 hours after sunrise from March 15 to May 15 during each 

year. In total, 283, 15 x 15 km cells were sampled. Observations of five birds or less were 

ground-truthed to confirm the actual presence of a lek. Observations with more than five 

birds were considered lek sites.  

We acquired LPC observations from 2012 through 2014 compiled by eBird, a freely-

available website that gathers, organizes, maintains, and disseminates information about bird 

observations from the public (Sullivan et al. 2009). Data submission requires the observer to 

report the date, time, location, distance traveled, effort (time), species observed, and number 

of individuals observed and any relevant comments or images. Observations of species that 

are rare for the location, time of year, or number observed are flagged for review by a 

regional editor (Sullivan et al. 2009). Because multiple observers can report LPCs at the 

exact same location, we filtered our data to include only observations that were spatially 

independent. We also omitted observations where the observer reported “moving” the 

location in the interest of the privacy of the landowner, or that were flagged for review but 

not verified by a regional editor. Finally, we only included eBird locations with detailed 

geographic coordinates while omitting those reported at larger scales (i.e., ¼ county scale) 

due to landowner sensitivity.  

We used the spatial rarefication tool in SDMtoolbox (Brown 2014) to reduce spatial auto-

correlation of our location data in ArcGIS 10.2 (ESRI, Redlands, CA). LPCs have been 

shown to have high site fidelity associated with the leks they were captured at, with a 

majority (up to 98%) of locations of radio-marked birds being within 5 km of the lek where 

they were captured (Kukal 2010). Therefore, we spatially rarefied our location data by 5 km. 

Since eBird data are associated with a semistructured citizen science project (Kelling et al. 

2019), we further standardized information associated with this database by only including 

eBird observations where the distance traveled by the eBird user was ≤5 km or effort area 

was ≤ 25km2 to match the grain of our environmental data (see below). 

Once both occurrence datasets were spatially rarefied, we randomly removed locations from 

the dataset with more samples so that both rarefied datasets had the same amount of 

occurrence locations. Finally, we created a joint occurrence dataset that incorporated 

occurrence locations from both the aerial survey data and the eBird data to simulate collating 

disparate datasets to maximize coverage of species’ occurrences within the species’ 

distribution; this is a common practice if low sample sizes are a concern when running 

SDMs. To make sure each dataset was equally represented in the joint occurrence dataset, we 

randomly selected an equal amount of locations from the eBird and aerial survey datasets 

until it had an equal sample size as the final rarefied datasets.  

Environmental Data 

LPC occupation of an area is often determined by the vegetation types present, amount of the 

landscape covered by those vegetation types (Jarnevich and Laubhan 2011; Timmer et al. 

2014; Hagen et al. 2016), and associated vegetation heights.  We used the 2013 existing 
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vegetation cover (EVC) and existing vegetation height (EVH) layers (LANDFIRE 2013) as 

environmental layers in our analysis. These layers were created using a combination of field-

based data and geospatial data layers under the direction of the Wildland Fire Leadership 

Council. Both layers had a cell size of 30 m, but were scaled up to a cell size of 5 km using 

Block Statistics and the Resample tools with a majority rule in ArcGIS 10.2 (ESRI, 2011). 

Thus, EVC and EVH categories represented in each 5 km pixel ultimately defined what the 

matrix of each 25 km2 area was composed of. The EVC layer represented percent cover of 

the live canopy layer of the dominant vegetation type from 0 to 100% and was divided into in 

three major classes: tree, shrub, and herbaceous. The layer was presented as categorical data 

where each cover class is separated into 10% cover categories (i.e., herbaceous cover >20 

and <30%). Cropland and developed vegetation types (areas with anthropogenic structures 

and infrastructure) were also included in the EVC layer. The EVH represented the average 

height of the dominant vegetation and included four classes: tree, shrub, herbaceous, and 

forest. Heights were recorded by class in at least 0.5 m intervals and up to 10 m intervals for 

the forest class. A more detailed description of each category within these two variables can 

be found at https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf 

(accessed 9/4/2019).  

Anthropogenic development negatively influences survival and causes displacement of 

grouse (Pitman et al. 2005; Wolfe et al. 2007; Hagen 2010; Hovick et al. 2014). Therefore, 

we incorporated anthropogenic impacts into our environmental layer dataset. To measure 

anthropogenic impacts, we used the global human footprint dataset available through the 

Socioeconomic Data and Applications Center and compiled by the Wildlife Conservation 

Society and Center for International Earth Science Information Network (Columbia 

University 2005). This layer incorporates human population pressure, land use, 

infrastructure, and access into one continuous data set ranging from 0 – 100 where 0 is no 

impact and 100 is maximum impact. The cell size is 1 km, however we resampled the layer 

by averaging to 5 km. 

The global human footprint dataset does not specifically incorporate oil and gas wells, which 

can impact LPC site occupation (Hunt and Best 2010) and have been important to predicting 

LPC lek density (Timmer et al. 2014). The Critical Habitat Assessment Tool (CHAT) 

provides a measure of oil and gas well density within a 1 square mile grid that is available for 

download through the Kansas Biological Survey (kars.ku.edu/maps/sgpchat). We 

downloaded the oil and gas well density layer from the CHAT and resampled the layer to a 5 

km resolution.  

The amount of land enrolled in the Conservation Reserve Program (CRP) is also important in 

predicting LPC occupation (Jarnevich and Laubhan 2011; Hagen et al. 2016). CRP provides 

annual rental payments for a period of 10-15 years to landowners enrolled in exchange for 

“retiring” and establishing grass cover on former cropland (Stubbs 2014). CRP is influential 

in structuring multi-scale connectivity of grasslands (Tanner and Fuhlendorf 2018) and has 

been determined critical to past and current LPC conservation efforts (Spencer et al. 2017; 

Sullins et al. 2018). The CHAT contains a CRP layer detailing the number of acres enrolled 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
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in the program in a 1 square mile grid. We resampled this layer by sum to represent the 

percentage of CRP within a 5 km resolution cell. 

The environmental layers were clipped to the extent of the counties within the LPC 

distribution as defined by the CHAT. We used the CHAT to help define our study extent as it 

is the spatial representation of the LPC Range Wide Plan (RWP) and functions as a common 

resource for scientists, managers, industry, and the public to help identify priority habitat 

(Southern Great Plains Crucial Habitat Assessment Tool, 2013. kars.ku.edu/maps/sgpchat/). 

Furthermore, we chose this extent as it represented the spatial coverage of environmental 

layers used and provided the CHAT tool. Counties were selected for the CHAT if they 

intersected a 10 km buffer that was placed around known LPC leks throughout the species’ 

distribution. The LPC distribution included 105 counties located in New Mexico, Texas, 

Oklahoma, Kansas, and Colorado. We were most interested in examining the impact of using 

location data from different sources on our modeling efforts; therefore, we limited our 

environmental layers to those most likely to impact LPC potential distribution based on our 

knowledge of prairie grouse and existing literature. 

Data Analysis  

We used maximum entropy modeling to generate LPC probability of distribution models 

with Maxent modeling software version 3.3.3k (Phillips et al. 2006; Elith et al. 2010). 

Maxent has proven capable of accurately modeling the probability of environmental 

suitability for a variety of species over a range of environmental conditions (Phillips and 

Dudik 2008), including grouse (Hovick et al. 2015; Jackson et al. 2015). Maxent compares 

environmental conditions at known LPC locations to all available conditions within the study 

extent (the counties within the LPC distribution), and then estimates the probability of 

suitability for the focal species.  

To assess the potential of citizen science data for use in LPC distribution modeling, we 

created three different model sets representing three types of occurrence data: an aerial 

survey model, an eBird model, and a joint model where the aerial survey and eBird location 

data were combined. Before creating models, we eliminated highly correlated environmental 

variables (|r|>0.7 [Dormann et al. 2013]) from our five environmental layers: EVC, EVH, 

global human footprint, number of wells (from CHAT), and % of CRP within a 5 km 

resolution cell (from CHAT). For initial models we withheld 30% of the location data in each 

model set for accuracy testing. Each model set was replicated 100 times using a 

bootstrapping method in Maxent. The average percent contribution from these 100 replicates 

was reported for all variables and used to assess variable importance. Variables that were 

found to have negligible contribution (<5%) were omitted (Sahlean et al. 2014).  

As metrics of model performance, we reported the area under the curve (AUC) of the 

receiver operating characteristic (ROC) and the standardized test omission error. The AUC 

measures the discriminatory capacity of the model such that a value of 0.5 is no better than 

random and a value of 1.0 would indicate a perfect prediction of site suitability by the model. 

Models with an AUC value >0.75 are generally considered informative (Swets 1988; 
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Fielding and Bell 1997; Elith 2002), though evaluating models with AUC alone may be 

misleading or violate AUC theory when modeling efforts using background data in place of 

true absence data, as our models do (Jiménez-Valverde 2012). Previous work evaluating the 

performance of species distribution models have used the True Skill Statistic (TSS) as an 

alternative to the AUC metric as it accounts for both omission and commission errors while 

also correcting for an inherent dependence on species prevalence, which could bias certain 

performance metrics (Allouche et al. 2006). However, recent research has illustrated that the 

TSS can be misleading within a presence-psuedoabsence framework and thus reliability 

metrics should be used when prevalence is unknown (Leroy et al. 2018). Thus, we used the 

Continuous Boyce Index (CBI) as a reliability metric to assess model performance in our 

study (Boyce et al. 2002; Hirzel et al. 2006). The CBI measures how model predictions differ 

from random distributions of observed presence data across the gradient of model prediction 

values. This metric ranges from -1 to +1 in which positive values indicate models where 

predictions agree with the actual distribution of the presence data, a value of 0 indicates a 

model that is no different from a random model, and negative values indicate a model that 

predicts the opposite distribution of the presence data. Finally, we used the standardized test 

omission error (Wilson et al. 2013) to further assess model performance. This metric is 

calculated by estimating the test omission rate (false negatives) for each model replicate (n = 

100 per data set) based on a binary suitability map which is standardized to have the same 

percent area of suitability. Here we used 10% training presence as the threshold to reclassify 

the Maxent continuous suitability values to binary (presence above the threshold and absence 

at or below the threshold). We chose this threshold rule as it is useful when reliability and 

precision of occurrences is likely variable (i.e., eBird data; Rebelo and Jones 2010) where 

probability of presence was greater than 10%. The percent area of suitability was set as the 

mean percentage of suitable area estimated across all model runs for each occurrence dataset. 

Incorporating this metric allowed for a standardized approach to compare congruence of 

models across different input datasets. 

Our objective was to compare the effect of location data between the three model sets; 

therefore, we standardized the influence of our environmental data at background (i.e., 

pseudo-absence) points across the three model sets. To address this, we created a background 

bias file (i.e., background points) by randomly selecting 50% of the pixels within our study 

extent (10,219 pixels). Using this bias file ensured that the background cells used for all three 

model sets were identical.  We then specified that 10,219 background points were to be used 

by Maxent, which is > 10,000 and therefore sufficient to represent the environment available 

(Phillips and Dudik 2008). 

To account for potential issues of model complexity (i.e., overfitting), we built Maxent 

models for each occurrence dataset with differing regularization multiplier values after 

removing highly correlated (|r|>0.70) and poorly contributing (<5% contribution) variables 

(Radosavljevic and Anderson 2014). The regularization multiplier is a coefficient specified 

by the user that is applied to the beta parameter of each feature class (i.e, a set of 

transformations of the original covariates [Elith et al. 2011]) in a model and alters the overall 

level of regularization (i.e., a penalty for each term included in a model) for each feature 
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class (Anderson and Gonzalez 2011, Radosavljevis and Anderson 2014) We built models 

with regularization multiplier values of 0.25, 0.50, 1.00, 1.50, 2.00, 4.00, 6.00, 8.00, and 

10.00 and then selected the best performing model through the Model Selection function of 

ENMTools (Version 1.4.4; Warren et al. 2010) that retains the model with the lowest Akaike 

Information Criterion (AIC) score. The best performing model based on AIC values was the 

final model used to map environmental suitability and compare performance metrics of 

models across aerial survey, eBird, and joint occurrence datasets. 

We compared outputs of the three model sets to one another using the I statistic, a measure of 

niche similarity, in ENMTools. The I statistic directly compares model estimates of 

environmental suitability for each cell between models, thus making the I statistic a 

threshold-independent method of comparing model output (Warren et al. 2008; Warren et al. 

2010). Values for this statistic range from 0 (no overlap) to 1 (complete overlap). A null 

distribution of the I statistic was created in the ENMTools identity test function from 100 

Maxent runs. The null distribution was created by pooling the occurrence points (both survey 

and eBird together) and randomizing their identities to create two new random occurrence 

datasets and estimating the I statistic across the 100 psuedoreplicates (Warren et al. 2008). 

We then compared the empirical I statistic (which was estimated from the true occurrence 

datasets) to the null distribution and determined significant differences between the values if 

the empirical I statistic did not overlap the null distribution. Finally, we compared 

distribution changes between all three SDMs by using the Centroid Changes tool in the 

SDMtoolbox (Brown 2014), which calculates the shift in SDM centroids between two 

different models. 

Roadside Bias Assessment 

To understand the potential impact of spatial biases in our occurrence datasets associated 

with roads (i.e., roadside bias), we calculated a road bias metric used by Kadmon et al. 

(2004):  

𝑅𝑜𝑎𝑑 𝐵𝑖𝑎𝑠𝑑 =
𝑛𝑑 − 𝑝𝑑𝑁

√𝑝𝑑(1 − 𝑝𝑑)𝑁
 

where nd is the number of occurrences within a distance (d) from a road, pd is the probability 

for a location to be within the distance (d) of the nearest road, and N is the total number of 

occurrences in each data set (i.e., aerial survey and eBird data sets). The independent 

probability (p) for a location to be within d of the nearest road is estimated by creating 

random points equal to N for each data set within the study extent and then determining the 

fraction of random points located within d. This metric is estimated from the normal 

approximate to the binomial distribution (Kadmon et al. 2004) and is distributed like a 

standard normal variable. Thus, using a one-tailed test, the metric would indicate a 

significant bias near roads for values greater than 1.64 and a significant bias away from roads 

for values less than -1.64 (α = 0.05). However, we used a two-tailed test as we wanted to 

determine a bias with no specific direction specified (i.e., testing both positive and negative 

biases together), thus values greater than 1.94 and less than -1.94 were considered significant 
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for a positive and negative roadside bias (α = 0.05). As we were most interested in direct 

effects of roads, we set d to 250 meters (Kadmon et al. 2004) for both data sets. 

Finally, to determine if any of our environmental variables were highly correlated with roads, 

we estimated a Pearson’s r for all continuous variables and used a Kruskal-Wallis test and a 

Tukey’s Multiple Comparison test for our two categorical variables. For continuous 

variables, a |r|>0.7 was considered highly correlated. Because our spatial grain was set at 5 

km, we calculated road density for our correlation and Kruskal-Wallis tests using the Line 

Density tool in ArcGIS 10.2 to estimate the density of roads within each 5 km pixel (km/25 

km2) and related this variable to our environmental variables. For all road-related analyses, 

we used road GIS layers for Colorado (https://data.colorado.gov/), Kansas 

(https://www.kansasgis.org/), New Mexico (http://rgis.unm.edu/), Oklahoma (http://gis-

okdot.opendata.arcgis.com/), and Texas (http://gis-txdot.opendata.arcgis.com/) which 

represented the five states within the LPC’s distribution.   

RESULTS  

From March 15-May 15, 2012 to 2014, a total of 106 LPC leks were detected by aerial 

surveys. Of the 106 locations, 12 also contained greater prairie-chickens (Tympanuchus 

cupido) and were recorded as “mixed” leks. We included these leks in our analysis as they 

were representative of LPC site occupation. Spatial rarefication of the aerial survey locations 

reduced our sample size from 106 to 68 leks. From January 2012 to December 2014, 522 

observations of LPCs were reported to eBird at 140 spatially independent sites. Most (78.6%) 

LPC observations were reported in March and April, and approximately half (49.8%) of the 

observations were made by six observers. Although there were observations that occurred 

outside of the March-May period for the eBird dataset, we only included those locations 

occurring from March 15-May15, 2012 to 2014 in our analyses to match the temporal extent 

of the aerial survey data. As the aerial survey occurrence dataset had the lowest sample size 

after spatial rarefication, all final occurrence datasets used for modeling purposes had a 

sample size of 68 (Table 1.1).  

https://data.colorado.gov/
https://www.kansasgis.org/
http://rgis.unm.edu/
http://gis-okdot.opendata.arcgis.com/
http://gis-okdot.opendata.arcgis.com/
http://gis-txdot.opendata.arcgis.com/
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Table 1.1. Average estimates of model performancea for three different Maxent models of 

environmental suitability for lesser prairie-chicken (Tympanuchus pallidicinctus) created 

using observations from eBird data, recorded in aerial surveys, and a model combining both 

datasets from March 15-May 15, 2012-2014. AUCb values > 0.75 indicate good model 

performance; lower omission error values are associated with higher model performance; the 

Continuous Boyce Index metric ranges from -1 to +1, with positive values indicating 

agreement with known presence data. 

          

Location type 

Occurrence 

locations 

(n) 

Average test 

AUCb  

Average 

standardized 

test omission 

(%) 

Continuous 

Boyce Index 

Aerial survey 68 0.76 (0.75-0.77) 23.4 (21.3-25.7) 0.73 (0.68-0.80) 

eBird 68 0.76 (0.74-0.77) 23.8 (21.6-25.9) 0.79 (0.73-0.85) 

Joint 68 0.70 (0.69-0.71) 24.9 (22.6-27.2) 0.76 (0.70-0.81) 
a 95% confidence intervals are indicated in parentheses. 

b Area under the curve of the receiver operating characteristic. 
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Based on AIC values, a regularization multiplier value of 1.5, 0.25, and 1 were used for the 

aerial survey, eBird, and joint models, respectively (Table 1.2). No other models were within 

a ΔAIC of <2, therefore we only considered these three regularization multiplier values 

moving forward. Average binary estimates of the percent area estimated as suitable were 

43.84%, 45.89%, and 50.08% for the aerial survey, eBird, and joint models, respectively. The 

average test AUC was >0.7 for all three models, with the greatest average test AUC reported 

for the aerial survey model (0.76; Table 1.1). Furthermore, the average (±SE) test omission 

was lowest in the aerial survey model (18.58 ± 0.97%; Table 1.1) and greatest in the joint 

model (20.15 ± 0.97%), though the difference between the average standardized test 

omission rates across all three model sets were not different based on overlapping confidence 

intervals. The highest CBI was estimated for the eBird model, though all three model sets 

had overlapping confidence intervals for CBI values. Based on these performance metrics, all 

three model sets had good performance. Logistic Maxent output maps (Figure 1.1) and 

probability distributions of site suitability between the three models were found to have a 

large degree of overlap (I statistic range = 0.930 to 0.978). The I statistic did not fall within 

the null distribution (P < observed = 0.01), indicating that the probability distributions of the 

eBird model and aerial survey model were significantly different (Figure 1.2). However, we 

did not consider this difference to be biologically significant as the empirical I statistic was 

0.929 while the null distribution ranged from 0.94 to 0.99. Furthermore, when calculating 

SDM centroid shifts between our three model sets, we estimated a 67.56 km northeast shift 

from the survey to eBird model, a 42.25 km southwest shift from the eBird to joint model, 

and a 32.81 km northeast shift from the survey to joint model, indicating minimal shifts in 

the center geographic region for the LPC across model sets (Figure 1.3).  
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Figure 1.1. Lesser prairie-chicken (Tympanuchus pallidicintus) site suitability estimated 

through Maxent using lesser prairie-chicken occurrence data from aerial surveys (A), eBird 

observations (B), and an equal combination of locations from both data sources (i.e., a joint 

model [C]) from March 15-May 15, 2012-2014. Overlaid black lines indicate state political 

boundaries.  
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Figure 1.2. The null distribution of the species distribution model overlap statistic I created from 

100 replicates of Maxent models that compared randomly selected lesser prairie-chicken 

(Tympanuchus pallidicintus) locations from the aerial survey dataset to locations from the eBird 

dataset. The empirical I statistic (indicated by an arrow) represents the empirical overlap statistic 

estimated from the actual occurrence data for each data set. Aerial survey and eBird occurrence 

data were collected from March 15-May 15, 2012-2014.
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Figure 1.3. Estimates of centroid shifts between Maxent models for the lesser prairie-chicken 

(Tympanuchus pallidicintus) as determined by three occurrence datasets; aerial survey, eBird, 

and joint (combined aerial survey and eBird). Data were collected from March 15-May 15, 2012-

2014. Shifts were estimated as 67.56 km from the survey to eBird model, 42.25 km from the 

eBird to joint model, and 32.81 km from the survey to joint model.  
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Table 1.2. Akaike’s Information Criteron (AIC) model selection results for Maxent model 

performance of three lesser prairie-chicken (Tympanuchus pallidicintus) occurrence datasets 

based on different regularization multiplier values. Top performing models are bolded for each 

occurrence dataset.  

  Aerial survey eBird Joint 

Regularization 

multiplier 

AIC 

score 

Log 

Likelihood 

AIC 

score 

Log 

Likelihood 

AIC 

score 

Log 

Likelihood 

0.25 1329.80 -632.90 1318.00 -638.00 1358.23 -637.12 

0.5 1320.80 -636.40 1324.34 -644.17 1339.66 -640.83 

1 1307.87 -634.94 1325.82 -644.91 1325.36 -640.68 

1.5 1303.13 -636.57 1324.97 -643.48 1340.47 -648.23 

2 1314.76 -643.38 1322.90 -645.45 1327.66 -646.83 

4 1326.52 -650.26 1331.95 -657.98 1331.12 -657.56 

6 1323.29 -655.64 1330.78 -661.39 1342.39 -667.19 

8 1334.84 -660.42 1335.38 -664.69 1342.93 -666.47 

10 1335.04 -663.52 1335.58 -664.79 1342.21 -669.11 
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All three final models for each occurrence dataset exhibited idiosyncratic relationships between 

the probability of suitability and the environmental layers included in our analyses (Figures 1.4-

1.6; Table 1.1). However, across all model sets, existing vegetation cover (EVC) and existing 

vegetation height (EVH) were consistently the two most important variables to models, with 

EVC contributing >50% to model accuracy gain for survey and eBird models (Table 1.3). Thus, 

regardless of occurrence datasets, vegetation cover and height were the primary drivers of the 

LPC distribution and out-contributed anthropogenic influences at a 5 km grain. We note that in 

Figures 1.4-1.6, only categories that had estimated lambdas across 75% of all model replications 

(Table 1.4) are graphically represented for simplicity.   
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Figure 1.4. Relationship between environmentala variables and probability of suitability (and 

associated standard deviation bars) for the lesser prairie-chicken (Tympanuchus pallidicintus) as 

estimated through Maxent using occurrence data from aerial surveys from March 15-May 15, 

2012-2014. Response curves indicate mean response of 100 replicated Maxent runs and the +/- 

one standard deviation. Average variable contribution to Maxent model accuracy gain is 

indicated in each panel. 

a Detailed descriptions of cover types and height categories can be found at 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf (accessed 9/4/2019). 

b Percentage of area (%) enrolled in the Conservation Reserve Program (CRP) as reported by the 

United States Department of Agriculture in 2014 (unpublished data). 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
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c Represents human population pressure, land use, infrastructure, and access into one continuous 

data set ranging from 0 – 100 where 0 is no impact and 100 is maximum impact (Columbia 

University 2005).  
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Figure 1.5. Relationship between environmental variables and probability of suitability (and 

associated standard deviation bars) for the lesser prairie-chicken (Tympanuchus pallidicintus) as 

estimated through Maxent using occurrence data from the eBird dataset from March 15-May 15, 

2012-2014. Response curves indicate mean response of 100 replicated Maxent runs and the +/- 

one standard deviation. Average variable contribution to Maxent model accuracy gain is 

indicated in each panel. 

a Detailed descriptions of cover types and height categories can be found at 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf (accessed 9/4/2019). 

b Percentage of area (%) enrolled in the Conservation Reserve Program (CRP) as reported by the 

United States Department of Agriculture in 2014 (unpublished data). 

c Provided by IHS Market (https://ihsmarkit.com/products/us-oil-gas-spatial-layers.html).  

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
https://ihsmarkit.com/products/us-oil-gas-spatial-layers.html
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Figure 1.6. Relationship between environmental variables and probability of suitability (and 

associated standard deviation bars) for the lesser prairie-chicken (Tympanuchus pallidicintus) as 

estimated through Maxent using occurrence data from combined aerial survey/eBird data from 

March 15-May 15, 2012-2014. Response curves indicate mean response of 100 replicated 

Maxent runs and the +/- one standard deviation. Average variable contribution to Maxent model 

accuracy gain is indicated in each panel. 

a Detailed descriptions of cover types and height categories can be found at 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf (accessed 9/4/2019). 

b Percentage of area (%) enrolled in the Conservation Reserve Program (CRP) as reported by the 

United States Department of Agriculture in 2014 (unpublished data). 

c Provided by IHS Market (https://ihsmarkit.com/products/us-oil-gas-spatial-layers.html). 

d Represents human population pressure, land use, infrastructure, and access into one continuous 

data set ranging from 0 – 100 where 0 is no impact and 100 is maximum impact (Columbia 

University 2005).

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
https://ihsmarkit.com/products/us-oil-gas-spatial-layers.html
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Table 1.3. Average estimates of variable contributiona to model accuracy gain for three Maxent model sets of lesser prairie-chicken 

(Tympanuchus pallidicinctus) environmental suitability created using observations from eBird data, recorded in aerial surveys, and a 

model combining both datasets from March 15-May 15, 2012-2014. 

    Average contribution (%) 

Location type 

Occurrence 

locations 

(n) 

CRPb EVCc EVHd HFe WELLSg 

Aerial survey 68 7.7 (6.5-8.9) 50.0 (47.6-52.4) 27.0 (24.6-29.5) 15.3 (13.8-16.7) 0.00 

eBird 68 14.2 (12.6-15.8) 52.3 (50.5-54.1) 23.7 (22.1-25.3) 0.00 9.8 (8.7-10.9) 

Joint 68 12.8 (10.9-14.6) 44.3 (42.0-46.6) 24.6 (22.6-26.5) 7.9 (6.6-9.3) 10.4 (9.1-11.8) 
a 95% confidence intervals are indicated in parentheses. 

b Percent cover of the Conservation Reserve Program per 25 km2. 

c Existing vegetation cover. 

d Existing vegetation height. 

e Represents human population pressure, land use, infrastructure, and access into one continuous data set ranging from 0 – 100 where 

0 is no impact and 100 is maximum impact (Columbia University 2005). 

f Number of oil and gas wells per 25km2 .  
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Table 1.4. Mean beta coefficients and standard deviations (SD) for the two categorical environmental variables for Maxent models 

using three different lesser prairie-chicken (Tympanuchus pallidicintus) datasets: eBird, aerial survey, and a combination of the two 

(joint). Lesser prairie-chicken locations were collected from March 15-May 15, 2012-2014.  

Variable 
Aerial survey eBird Joint 

na 𝛽̅ SD na 𝛽̅ SD na 𝛽̅ SD 

Existing vegetation cover          

Close grown crop 0 - - 76 3.93 0.45 48 2.82 0.38 

Herbaceous cover > 40 and < 50% 100 1.46 0.45 95 1.92 0.56 91 0.86 0.58 

Herbaceous cover > 50 and < 60% 100 1.21 0.45 100 2.94 0.41 100 1.42 0.42 

Herbaceous cover > 60 and < 70% 98 1.23 0.50 99 2.65 0.46 98 1.47 0.45 

Herbaceous cover > 70 and < 80% 55 -0.001 0.55 92 1.69 0.63 77 0.57 0.61 

Herbaceous cover > 80 and < 90% 0 - - 93 3.70 0.54 82 1.49 0.63 

Row crop 46 -0.23 0.49 0 - - 36 -0.53 0.41 

Shrub cover > 10 and < 20% 0   55 3.71 0.42 0 - - 

Shrub cover > 50 and < 60% 52 0.58 0.37 0 - - 41 0.73 0.37 

Wheat 55 -0.41 0.45 99 1.86 0.52 82 0.48 0.45 

Existing vegetation height          

Barren 45 2.89 0.74 0 - - 0 - - 

Herbaceous height 0 to 0.5 meters 0 - - 99 1.40 0.54 88 0.64 0.46 

Herbaceous height 0.5 to 1.0 

meters 19 0.01 0.40 68 1.02 0.68 29 -0.22 0.26 

Herbaceous height > 1.0 meter 23 0.52 0.42 90 1.48 0.69 65 0.74 0.45 

Shrub height 0 to 0.5 meters 83 2.19 0.81 75 3.92 0.69 80 2.69 0.71 

Shrub height 0.5 to 1.0 meters 75 1.14 0.60 0 - - 66 0.91 0.58 
a Number of model replicates (out of 100 total) in which this category had an estimated beta coefficient.
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Within the categorical variable EVC, 25 km2 landscape matrices dominated by 40-69% 

herbaceous cover had a strong positive association with LPC environmental suitability across 

model sets based on lambdas (β ≥ 0.86, SD = 0.58 and ≤ 2.94, SE = 0.41, Table 1.4). There was 

a positive relationship with matrices dominated by close grown crops and wheat in the eBird 

model (β = 3.93, SD = 0.45 and 1.86, SD = 0.52, respectively) and joint model (β = 2.82, SD = 

0.38 and 0.48, SD = 0.45, respectively). Conversely, the close grown crop category was not 

included in any model replicates for the aerial survey model set while matrices dominated by 

wheat had a negative influence on site suitability based on this model set (β = -0.41, SD = 0.45; 

Table 1.4). Finally, there was a strong positive relationship with matrices dominated by 10-19% 

shrub cover for the eBird model (β = 3.71, SD = 0.42) whereas a positive relationship with 

matrices dominated by 50-59% shrub cover existed in the aerial survey (β = 0.58, SD = 0.37) and 

joint models (β = 0.73, SD = 0.37).  

Within EVH, matrices dominated by shrub heights of 0-0.5 m were positively associated with 

LPC environmental suitability across all model sets (β ≥ 2.19, SD = 0.81 and ≤ 3.92, SD = 0.69; 

Table 1.4) whereas matrices dominated by shrub heights of 0.5 to 1 m positively influenced 

suitability in the aerial survey and joint models. Landscape matrices dominated by herbaceous 

height of > 1 m had a significant positive influence on site suitability for LPCs across all model 

sets (β > 0.52, SD = 0.42 and < 1.48, SD = 0.69). However, matrices dominated by herbaceous 

height of < 1 m in height was only influential in eBird and joint models (Table 1.4). Matrices 

dominated by barren lands were shown to have a positive relationship in the aerial survey model 

(β = 2.89, SD = 0.74; Table 1.4), likely representing areas indicative of leks.  

Similar to our categorical variables, our models exhibited both agreement and disagreement in 

the relationships between LPC occurrences and continuous environmental variables (Figures 1.4-

1.6). For instance, 25 km2 landscape matrices with higher densities of oil/gas wells and a greater 

human imprint consistently had lower probability of suitability values for LPCs. Conversely, the 

relationship between LPC suitability and the % of CRP within 25 km2 matrices was disparate 

among the eBird model when compared to the aerial survey and joint models (Figures 1.4-1.6).  

Roadside Bias 

The eBird occurrence locations were significantly biased towards roads within 250 m (road bias 

= 2.13) whereas the aerial survey locations were significantly biased away from roads (road bias 

= -5.78). However, when we combined both the eBird and the aerial survey data sets, we did not 

detect a roadside bias (road bias = 1.07).  

Results from our correlation analysis indicated that road density was not highly correlated with 

the oil/gas well (r = 0.03), the human footprint (r = 0.53), or the CRP (r = 0.07) environmental 

layers. However, we did detect differences in road density across matrices dominated by 

different cover types (p < 0.01; Figure 1.7) and height categories (p < 0.01; Figure 1.8). 

Landscape matrices dominated by close grown crops had the highest road density of any cover 

types (1.16 km/25 km2, SE = 0.09) and matrices dominated by row crops (0.95 km/25 km2, SE = 

0.01) and wheat (0.94 km/25 km2, SE = 0.01) also had significantly greater road densities than 

herbaceous and shrub cover types (Figure 1.7). Matrices dominated by herbaceous height > 1 m 
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had the highest amount of road density among height categories (1.05 km/km2, SE = 0.03) 

whereas landscape matrices dominated by shrub height of 0 to 0.5 m (0.24 km/km2, SE = 0.03) 

and shrub height of 0.5 to 1 m (0.32 km/km2, SE = 0.02) had the lowest amounts of road density 

(Figure 1.8).   
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Figure 1.7. Difference in road densitya by existing vegetation cover (EVC)b type through the 

lesser prairie-chicken’s (Tympanuchus pallidicintus) distribution as determined by a Kruskal-

Wallis test. Letters represent significance categories as determined by a Tukey’s Multiple 

Comparison Test.  

a Road GIS layers were obtained for Colorado (https://data.colorado.gov/), Kansas 

(https://www.kansasgis.org/), New Mexico (http://rgis.unm.edu/), Oklahoma (http://gis-

okdot.opendata.arcgis.com/), and Texas (http://gis-txdot.opendata.arcgis.com/) which 

represented the five states within the LPC’s distribution.   

b Detailed descriptions of cover types and height categories can be found at 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf (accessed 9/4/2019).  

https://data.colorado.gov/
https://www.kansasgis.org/
http://rgis.unm.edu/
http://gis-okdot.opendata.arcgis.com/
http://gis-okdot.opendata.arcgis.com/
http://gis-txdot.opendata.arcgis.com/
https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
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Figure 1.8 Difference in road densitya by existing vegetation height (EVH)b categories through 

the lesser prairie-chicken’s (Tympanuchus pallidicintus) distribution as determined by a Kruskal-

Wallis test. Letters represent significance categories as determined by a Tukey’s Multiple 

Comparison Test. 

a Road GIS layers were obtained for Colorado (https://data.colorado.gov/), Kansas 

(https://www.kansasgis.org/), New Mexico (http://rgis.unm.edu/), Oklahoma (http://gis-

okdot.opendata.arcgis.com/), and Texas (http://gis-txdot.opendata.arcgis.com/) which 

represented the five states within the LPC’s distribution.   

b Detailed descriptions of cover types and height categories can be found at 

https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf (accessed 9/4/2019)  

https://data.colorado.gov/
https://www.kansasgis.org/
http://rgis.unm.edu/
http://gis-okdot.opendata.arcgis.com/
http://gis-okdot.opendata.arcgis.com/
http://gis-txdot.opendata.arcgis.com/
https://www.landfire.gov/documents/LF-GAPMapUnitDescriptions.pdf
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OBJECTIVE 2 – Determine the potential of areas of high conservation value for lesser 

prairie-chickens on secondary species of management value 

METHODS 

Study site 

We conducted our study in Beaver County, Oklahoma (36° 45' N, 100° 23' W). The county is 

dominated by sand sagebrush (Artemisia filifolia) shrublands and land actively enrolled in CRP 

(31.5% of the county) that varied in composition but frequently included old world bluestem 

(Bothriochloa ischaemum), sideoats grama (Bouteloua curtipendula), western wheatgrass 

(Elymus smithii), and Illinois bundleflower (Desmanthus illinoensis). Planted pastures were often 

areas where the CRP contract had not been renewed or where old world bluestem had been 

planted and managed for cattle grazing. Shortgrass prairie vegetation included blue grama 

(Bouteloua gracilis), buffalograss (Bouteloua dactyloides), sideoats grama, soapweed yucca 

(Yucca glauca), and sand sagebrush. Cropland was primarily planted to winter wheat (Triticum 

spp.), but also included small amounts of sorghum (Sorghum bicolor) and corn (Zea mays). The 

Beaver River flows west to east through Beaver County and most of the county’s woodland 

vegetation, consisting primarily of eastern cottonwood (Populus deltoids) and non-native, 

invasive salt cedar (Tamarix spp.), can be found along it.  

Our study sites in Beaver County contained 4 primary types of anthropogenic features: roads, 

power lines, oil and gas wells, and residential areas. We used the US Department of 

Agriculture’s (USDA) GeoSpatial Data Gateway website to access the TIGER shapefile 

(produced by the US Census Bureau) depicting the primary and secondary roads of Beaver 

County. We did not differentiate between road types (paved/unpaved) in our analysis. 

Residential areas were mapped by hand in ArcMap 10.1 (ESRI 2011, Redlands, CA) using the 

2013 USDA National Agriculture Imagery Program imagery as a guideline for Beaver County. 

We obtained the location of power lines and active oil and gas wells from the Western 

Association of Fish and Wildlife Agencies.  

Occurrence location data 

Lesser prairie-chicken locations 

We used occurrence locations for LPC distribution models from GPS locations acquired during 

part of a larger research project. Our study was centered on 3 LPC leks which were spaced 

approximately 32 km apart in the northern, southwestern, and southeastern regions of the county. 

We trapped 32 female and 72 male LPCs from March to May 2013-2015 on lek sites primarily 

during the spring using methods approved by Oklahoma State University’s Institutional Animal 

Care and Use Committee under protocol #AG-13-3. We used 20-25 walk-in funnel traps (per 

lek) arranged strategically around lek sites (Haukos et al. 1990). Captured birds were sexed, aged 

(Copelin 1963), and banded with a numbered, aluminum band (Hagen et al. 2007). We fit a 22 

gram, solar, GPS transmitter to both male and female LPCs just above the pelvis of the bird (a 

“rump mount”) using a lightweight, Teflon harness (Bedrosian and Craighead 2007). 

Transmitters were constructed by Microwave Telemetry Inc. (Columbia, MD) and programed to 



29 
 

collect as many as 15 locations in a 24-hour period, including at least two nocturnal locations. 

The minimum interval between locations was 1 hour. The horizontal error associated with our 

transmitters was +/-18m with 85% of locations falling below an 18 m circular error (Ted Rollins, 

Microwave Telemetry, personal communication). We censored locations collected in the first 2 

weeks after capture to account for the potential effects of capture myopathy.  

Northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) locations 

For northern bobwhite and scaled quail occurrence locations, we used radio-telemetry data that 

was collected as part of a larger research project. We captured bobwhite and scaled quail 

annually from 2013-2015 using walk-in funnel traps (Stoddard 1931). Captured birds were fitted 

with a necklace-style radio-transmitter weight 6 g (Advanced Telemetry Systems, Inc., Isanti, 

Minnesota) if they met a minimum mass requirement of 130 g. We located radio-marked 

individuals a minimum of three times per week using a scanning receiver and a Yagi antenna by 

homing within 15 m and recording the distance and azimuth to the quail location. To capture 

diurnal variability in habitat use patterns, we tracked quail to different times of the day on 

subsequent days. All trapping and handling methods complied with the protocol determined by 

Oklahoma State University’s Institutional Animal Care and Use Committee Permit (no. AG-11-

22). 

Additional data and spatial rarefication of location data 

In addition to the occurrence locations obtained from GPS and radio-telemetry data, we also 

collated locations from the Biodiversity Information Serving Our Nation (BISON) data base 

(https://bison.usgs.gov/), which was created by the USGS and provides a platform to access 

collated species occurrence data from multiple research data sets throughout the United States. 

We obtained occurrence data from our three study species from 2013-2015 from the BISON 

website to increase the spatial coverage of our occurrence locations. 

As per our methods in Objective 1, once GPS, radio-telemetry, and BISON occurrence locations 

were collated for all three species, we used the spatial rarefication tool in SDMtoolbox (Brown 

2014) to reduce spatial auto-correlation of our location data for all three species in ArcGIS 10.2 

(ESRI, Redlands, CA). We used daily movement information to determine the intraspecific 

spatial rarefication distance for each dataset. For LPCs, we used a spatial rarefication distance of 

293 m (Unger 2017), whereas a distance of 179 m and 214 m were used for bobwhite and scaled 

quail, respectively (Tanner et al. 2019). 

Environmental data 

As we were interested in small-scale variability in vegetation patterns associated with changing 

environmental conditions (i.e., annual precipitation), we uses environmental layers associated 

with the Rangeland Analysis Platform (RAP; Jones et al. 2018). This dataset provides annual 

percent cover of different functional cover groups (Table 2.1) which are estimates produced from 

combining field data associated with the NRCS National Resources Inventory and the BLM 

Assessment, Inventory, and Monitoring datasets with Landsat satellite imagery, abiotic land 

surface data, and gridded meteorology data within a Random Forest model (Table 2.1; Jones et 

https://bison.usgs.gov/
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al. 2018). The resulting model predicts the annual percent cover of these functional cover groups 

at a 30 m resolution. To match the temporal extent of our location data, we obtained rasters for 

each cover class from 2013-2015. Finally, we also included a spatially explicit active CRP raster, 

which was provided by the USDA Farm Service Agency.  
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Table 2.1. Average annual changes in the percent cover of plant functional groups and annual 

precipitation in Beaver County, Oklahoma from 2013-2015 as determined by the Rangeland 

Analysis Platforma. 

Year 

Annual 

forb & 

grass cover 

(%) 

Perennial 

forb & 

grass cover 

(%) 

Shrub 

cover 

(%) 

Bare 

ground 

cover (%) 

Tree 

cover 

(%) 

Annual 

precipitation 

(cm) 

2013 10.95 44.18 7.05 21.19 1.23 48.59 

2014 10.14 51.97 6.7 18.72 1.38 44.22 

2015 16.05 61 8.14 9.04 2.7 84.89 
aJones et al. 2018.  
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To incorporate the influence of anthropogenic features into our distribution models, we created 

distance-based rasters to anthropogenic features. The anthropogenic rasters included in our 

analysis were distance to oil/gas wells, power lines, residential areas, roads, and vertical 

structures (i.e., wind turbines, cell phone towers, ec.). We obtained the location of oil/gas wells, 

power lines, and vertical structures from the Western Associated of Fish and Wildlife Agencies. 

We obtained a roads layer through the USDA GeoSpatial Data Gateway to access the TIGER 

shapefile depicting primary and secondary roads throughout the county. Finally, we obtained 

residential area data by hand mapping these locations in ArcGIS 10.2 using 2013 USDA NAIP 

imagery within Beaver county. Once all spatially explicit anthropogenic feature data were 

obtained, we created a Euclidean distance-based raster for each feature type at a 30 m resolution 

to match the spatial grain of the RAP rasters.  

Finally, we obtained a digital elevation model (DEM) through the USGS National Map Data 

Collection (https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned-1-meter-

downloadable-data-collection-from-the-national-map-) and used the Spatial Analyst tool in 

ArcGIS 10.2 to calculate the aspect and slope layers. Thus, our initial environmental layer data 

set included 15 variables per year (seven vegetation, five anthropogenic, and three geographic 

layers). We note that only the RAP vegetation related variables were temporally dynamic in our 

distribution models, while the anthropogenic and geographic variables remained static. 

Data analysis 

All species distribution models were created following identical methods as described in the 

Methods section for Objective 1. However, we only used the AUC and test omission metrics to 

assess model performance and reduced the number of model replicates from 100 to 30 for 

simplicity. As our objective for this specific study was to assess how areas of multi-species 

overlap varied with temporal variability in environmental conditions, we calculated two metrics 

of overlap based on the logistic output from our Maxent models and from discrete binary maps 

(either suitable or non-suitable based on a suitability threshold). For the logistic probability 

maps, we compared the niche similarity of the three species for each year (2013-2015) using the 

I statistic in ENMTools as described above in Objective 1 (Warren et al. 2010). For the binary 

maps, we calculated the range overlap value in ENMTools, which is estimated as (Nx,y/min(Nx, 

Ny)), where Nx,y is the number of pixels in which both species are predicted to be present and Nx 

and Ny are the number of pixels where species X and species Y are predicted present, 

respectively (Warren et al. 2010). Because this metric is reliant on a suitability threshold, we 

estimated the range overlap for all values of the suitability threshold, ranging from 0.01 to 1 (i.e., 

99 estimates).  

Post-hoc analysis 

We created discrete maps of suitable and non-suitable areas for each species using the maximum 

sensitivity and specificity threshold rule (Liu et al. 2013). Once these discrete output maps were 

created, we used the Raster Calculator tool in ArcGIS 10.2 to estimate areas with four possible 

categories: suitable for an individual species (two possible categories), areas suitable for two 

species, and areas in which our models predicted to be unsuitable for both species for each year. 

https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned-1-meter-downloadable-data-collection-from-the-national-map-
https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned-1-meter-downloadable-data-collection-from-the-national-map-
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We then calculated means of all environmental variables contained in each one of these discrete 

map categories by extracting raster values to points centered on each pixel.  Once these values 

were extracted for each map category, we used nonmetric multidimensional scaling (NMDS) 

using the “vegan” package (Oksanen et al. 2015) in Program R to visualize differences in 

environmental layers across all four possible categories for each species/year combination (i.e., 

northern bobwhite/LPC, scaled quail/LPC, and northern bobwhite/scaled quail for 2013, 2014, 

and 2015). Our data set was comprised of different types of variables on different scales (i.e., 

distance-based, percentage based, etc.), thus we used Gower distance coefficients to create a 

dissimilarity matrix (Gower 1971). For all three NMDS analyses (i.e., species combinations), we 

used two axes to estimate ordinal space as this approach simplified the visualization and 

produced well-performing stress values (Oksanen et al. 2015). Finally, we tested for significant 

differences in ordinal space associated with different map categories and across all three years 

using a permutational multivariate analysis of variance (PERMANOVA) with 10,000 

permutations (Oksanen et al. 2015).  

RESULTS 

From 1 April 2013- 1 July 2015, we obtained a total of 13,555 northern bobwhite locations (2013 

= 6,601, 2014 = 5,675, 2015 = 1,279) from 400 radio-collared individuals. We obtained a total of 

7,120 scaled quail locations (2013 = 3,204, 2014 = 3,117, 2015 = 799) from 194 radio-collared 

individuals. Finally, we obtained 120,231 LPC locations (2013 = 53,099, 2014 = 59,116, 2015 = 

8,016) from 67 GPS-transmittered individuals. Data acquisition from the BISON data base 

further provided 160, 45, and 1 additional occurrence locations for northern bobwhite, scaled 

quail, and LPC, respectively. After spatial rarefication, our final occurrence data sets included 

933 northern bobwhite locations (2013 = 434, 2014 = 402, 2015 = 97), 507 scaled quail locations 

(2013 = 228, 2014 = 212, 2015 = 67), and 887 LPC locations (2013 = 296, 2014 = 441, 2015 = 

150).  

Based on AICc values, regularization multiplier values of 0.50 (2013), 0.25 (2014), and 0.25 

(2015) were used for LPC models, values of 1.50 (2013), 1.50 (2014), and 1 (2015) were used 

for northern bobwhite models, and a value of 1 was used for all scaled quail models. All model 

performance metrics indicated good performance of our species distribution models, with all 

average test AUC values being >0.87 and all average test omission error values being <0.22 

(Table 2.2). All models indicated idiosyncratic relationships between the probability of 

suitability and environmental variables across the environmental variables included. However, 

elevation was included as a primary contributor to model accuracy gain in all species distribution 

models (Table 2.3). For the LPC, the CRP cover class was a primary contributing variable to 

model accuracy gain as well, contributing >31% across all three years. When CRP was present 

on the landscape, the probability of suitability for the LPC was 74.27% (SE = 0.001), 74.68% 

(SE = 0.002), and 75.05% (SE = 0.006) during 2013, 2014, and 2015, respectively. Conversely, 

areas not comprised of CRP cover had a probability of suitability for LPCs of 27.58% (SE = 

0.04), 29.30% (SE = 0.04), and 23.73% (0.06) during 2013, 2014, and 2015, respectively (Figure 

2.1). This indicated that areas in CRP were predicted to be 2.69, 2.55, and 3.16 times more 
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suitable for LPCs than areas outside of CRP. However, CRP was not a contributing variable in 

any northern bobwhite or scaled quail distribution models.   
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Table 2.2. Average estimates of model performance for 30 replicates of Maxent models of the 

lesser prairie-chicken (Tympanuchus pallidicinctus), northern bobwhite (Colinus virginianus), 

and scaled quail (Callipepla squamata) in Beaver County, Oklahoma from April 1, 2013-July 1, 

2015. AUCb values > 0.75 indicate good model performance; lower test omission error values 

are associated with higher model performance. 

Species Year 

Average 

test 

AUCa 

Average 

test 

omission 

error 

Lesser prairie-

chicken 
2013 0.87 0.22 

2014 0.88 0.15 

2015 0.91 0.12 

Northern 

bobwhite 
2013 0.94 0.09 

2014 0.93 0.08 

2015 0.88 0.15 

Scaled quail 2013 0.88 0.05 

2014 0.94 0.07 

2025 0.95 0.06 
a Area under the curve of the receiver operating characteristic.
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Table 2.3. Average estimates of variable contributiona to model accuracy gain for 30 replicates of Maxent models of the lesser prairie-

chicken (Tympanuchus pallidicinctus), northern bobwhite (Colinus virginianus), and scaled quail (Callipepla squamata) in Beaver 

County, Oklahoma from April 1, 2013-July 1, 2015.   

 

aStandard errors included in parentheses.  

bDetermined through the Rangeland Analysis Platform (Jones et al. 2018) 

cConservation Reserve Program 

Species Year 

Cover of 

annual 

forbs and 

grass 

(%)b 

Cover 

of bare 

ground 

(%)b 

Cover of 

litter 

(%)b 

Cover of 

perennial 

forbs and 

grass 

(%)b 

Cover of 

shrubs 

(%)b 

Cover of 

trees (%)b CRPc 
Elevation 

(m) 

Distance 

to power 

lines (m) 

Distance 

to roads 

(m) 

Lesser 

prairie-

chicken 

2013 
9.53 

(0.43) 

20.59 

(0.89) 
- - - - 

31.42 

(0.92) 

38.47 

(0.57) 
- - 

2014 
8.93 

(0.49) 
- 

9.43 

(0.29) 
- - - 

32.16 

(0.74) 

49.48 

(0.75) 
- - 

2015 - - - 
8.44 

(0.85) 

7.35 

(0.78) 
- 

34.61 

(1.18) 

49.60 

(0.80) 
- - 

Northern 

bobwhite 

2013 - - - 
10.86 

(0.29) 

8.53 

(0.27) 
- - 

34.58 

(0.53) 
- 

46.03 

(0.74) 

2014 
11.42 

(0.43) 
- - - 

40.42 

(0.96) 
- - 

21.68 

(0.61) 
- 

26.78 

(0.63) 

2015 - - - 
15.66 

(2.26) 
- 

20.46 

(3.25) 
- 

41.39 

(4.34) 

12.75 

(3.91) 

9.74 

(4.26) 

Scaled 

quail 

2013 - - - - - - - 
91.43 

(0.52) 

8.57 

(0.52) 
- 

2014 
11.85 

(2.23) 
- - - 

34.23 

(3.35) 
- - 

44.59 

(2.43) 

9.33 

(1.54) 
- 

2015 - 
8.56 

(2.15) 
- - - 

25.10 

(3.21) 
- 

55.00 

(2.30) 

11.34 

(2.59) 
- 
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Figure 2.1. Probability of environmental suitability for the lesser prairie-chicken (Tympanuchus 

pallidicintus) in relation to whether or not the land cover type was actively enrolled in the 

Conservation Reserve Program (CRP). Probability of suitability was determined by 30 replicated 

Maxent models in Beaver County, Oklahoma from April 1, 2013-July 1, 2015. 
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All binary maps derived from the logistic outputs of our species distribution models indicated 

that the probability of niche overlap for LPC with northern bobwhite or scaled quail was greatest 

during 2013 (Figures 2.2 and 2.3), corresponding to the period of greater drought and lower 

rainfall (compared to 2014 and 2015).  Conversely, the amount of area predicted as suitable for 

both northern bobwhite and scaled quail was similar across years, despite a greater amount of 

area being predicted suitable for scaled quail during 2013 (Figure 2.4).  Based on our estimates 

of the I statistic, niche similarity was lowest between northern bobwhite and LPC, ranging from 

0.63 in 2013 to 0.40 in 2015 (Figure 2.5). Similarly, niche similarity between scaled quail and 

LPCs was greatest in 2013 and lowest in 2015, whereas there was little change in the niche 

similarity estimates between northern bobwhite and scaled quail across years (Figure 2.5). When 

assessing range overlap values across years and logistic thresholds, we predicted higher amounts 

of range overlap for northern bobwhite and LPCs and scaled quail and LPCs during 2013 when 

compared to 2014-2015.  The higher range overlap values for northern bobwhite and scaled quail 

varied across years and varied across logistic thresholds, in which 2013 and 2015 had similar 

amounts of range overlap up to a logistic threshold of 0.23, but diverged at higher threshold 

values in which 2015 indicated greater amounts of range overlap (Figure 2.6). 

Post-hoc results 

All NMDS models performed well with two explanatory axes based on stress tests (northern 

bobwhite/LPC: 0.11, northern bobwhite/scaled quail: 0.03, and scaled quail/LPC: 0.10). 

PERMANOVA results indicated significant differences in ordinal space associated with discrete 

map categories for the northern bobwhite/LPC comparison (R2 = 0.68, P = 0.001), the northern 

bobwhite/scaled quail comparison (R2 = 0.67, P = 0.004), and the scaled quail/LPC comparison 

(R2 = 0.62, P = 0.002). PERMANOVA analyses assessing differences across years within each 

map category indicated significant differences across all three years for the northern 

bobwhite/scaled quail comparison (R2 = 0.40, P = 0.05) and the scaled quail/LPC comparison (R2 

= 0.40, P = 0.03), but not for the northern bobwhite/LPC comparison (R2 = 0.32, P = 0.11). 

Across both NMDS models with LPC comparisons, the x-axis (NMDS1) generally represented 

relationships with anthrophonic features (greater values being closer to anthropogenic features), 

where-as the y-axis (NMDS2) represented changes in functional vegetation cover types, with 

high values represented by woody cover and lower values represented bare areas. For all 

comparisons with LPCs, areas estimated as suitable for only LPCs contained greater amounts of 

CRP when compared to all other map categories. Areas estimated as suitable for only LPCs had 

an average CRP coverage of 29.1-41.8% whereas areas estimated as suitable for only northern 

bobwhite or scaled quail had a CRP coverage of <1%. Similarly, areas predicted suitable for only 

LPCs generally were further away from anthropogenic features when compared to areas 

predicted suitable for only northern bobwhite and scaled quail (Figures 2.7 and 2.8).  

Conversely, the x-axis for the NMDS model assessing northern bobwhite and scaled quail 

suitability models represented anthropogenic features but the y-axis was inverse, in which low 

NMDS2 values represented woody cover and high values represented areas with little-to-no 

vegetation (Figure 2.9). This model indicated that areas predicted suitable for only scaled quail 

had greater CRP coverage than areas predicted only suitable for northern bobwhite or areas in 
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which both northern bobwhite and scaled quail were predicted present. However, the greatest 

amount of CRP cover in these areas was 12.7% and was similar to values within the areas where 

neither species was predicted present. Instead, divergence between these species occurred 

because of differences in the distance to anthropogenic features, in which areas predicted suitable 

for on northern bobwhite were closer to anthropogenic features than areas predicted suitable for 

only scaled quail (Figure 2.9).   



40 
 

 

Figure 2.2. Binary suitability output maps for the lesser prairie-chicken (Tympanuchus 

pallidicintus) and northern bobwhite (Colinus virginianus) as predicted by 30 replicated Maxent 

models in Beaver County, Oklahoma from April 1, 2013-July 1, 2015. Green indicates areas 

predicated suitable for northern bobwhite only, orange for lesser prairie-chicken only, blue for 

both species, and grey for neither species. Binary maps were created from logistic probability 

outputs using the maximum sensitivity and specificity threshold rule.  
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Figure 2.3. Binary suitability output maps for the lesser prairie-chicken (Tympanuchus 

pallidicintus) and scaled quail (Callipepla squamata) as predicted by 30 replicated Maxent 

models in Beaver County, Oklahoma from April 1, 2013-July 1, 2015. Green indicates areas 

predicated suitable for scaled quail only, orange for lesser prairie-chicken only, blue for both 

species, and grey for neither species. Binary maps were created from logistic probability outputs 

using the maximum sensitivity and specificity threshold rule.  
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Figure 2.4. Binary suitability output maps for the northern bobwhite (Colinus virginianus) and 

scaled quail (Callipepla squamata) as predicted by 30 replicated Maxent models in Beaver 

County, Oklahoma from April 1, 2013-July 1, 2015. Green indicates areas predicated suitable for 

northern bobwhite only, orange for scaled quail only, blue for both species, and grey for neither 

species. Binary maps were created from logistic probability outputs using the maximum 

sensitivity and specificity threshold rule.   
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Figure 2.5. Moran’s I statistic for measuring niche similarity between lesser prairie-chicken 

(Tympanuchus pallidicintus), northern bobwhite (Colinus virginianus), and scaled quail species 

distribution models as predicted by 30 replicated Maxent models in Beaver County, Oklahoma 

from April 1, 2013-July 1, 2015. Green represents the niche similarity of northern bobwhite and 

scaled quail models, red represents scaled quail and lesser-prairie chicken models, and blue 

represents northern bobwhite and lesser-prairie chicken models. 
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Figure 2.6. Range overlap statistics across varying logistic threshold values for lesser prairie-

chicken (Tympanuchus pallidicintus), northern bobwhite (Colinus virginianus), and scaled quail 

species distribution models as predicted by 30 replicated Maxent models in Beaver County, 

Oklahoma from April 1, 2013-July 1, 2015. Green represents the niche similarity of northern 

bobwhite and scaled quail models, red represents scaled quail and lesser-prairie chicken models, 

and blue represents northern bobwhite and lesser-prairie chicken models. Solid lines are models 

from 2013, dashed lines are from 2014, and dotted lines are from 2015.
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Figure 2.7. Non-metric multidimensional scaling of environmental dataa associated with discrete 

maps derived from logistic outputs of Maxent models created from northern bobwhite (Colinus 

virginianus) and lesser prairie-chicken (Tympanuchus pallidicintus) data in Beaver County, OK 

from 2013-2015. Colors represent different map categories (purple: areas predicted unsuitable 

for both species; green: areas predicted suitable for only lesser prairie-chickens; red: areas 

predicted suitable for both northern bobwhite and lesser prairie-chickens; cyan: areas predicted 

suitable for only northern bobwhite). Years are represented by different shapes (circle: 2013; 

triangle: 2014; square: 2015). Environmental variables are represented in ordinal space by red 

text.  

aCRP: % cover of the Conservation Reserve Program; BG: % cover of bare ground; Litter: % 

cover of leaf litter; AFG: % cover of annual forbs and grass; PFG: % cover of perennial forbs 

and grass; Shrubs: % cover of shrubs; Tree: % cover of trees; DEM: elevation (m); Slope: slope 

of terrain; Anthro: distance (m) to residential areas; Wells: distance (m) to oil/gas wells; 

Powerlines: distance (m) to powerlines; Roads: distance (m) to roads.
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Figure 2.8. Non-metric multidimensional scaling of environmental dataa associated with discrete 

maps derived from logistic outputs of Maxent models created from scaled quail (Callipepla 

squamata) and lesser prairie-chicken (Tympanuchus pallidicintus) data in Beaver County, OK 

from 2013-2015. Colors represent different map categories (purple: areas predicted unsuitable 

for both species; green: areas predicted suitable for only lesser prairie-chickens; red: areas 

predicted suitable for both northern bobwhite and lesser prairie-chickens; cyan: areas predicted 

suitable for only scaled quail). Years are represented by different shapes (circle: 2013; triangle: 

2014; square: 2015). Environmental variables are represented in ordinal space by red text.  

aCRP: % cover of the Conservation Reserve Program; BG: % cover of bare ground; Litter: % 

cover of leaf litter; AFG: % cover of annual forbs and grass; PFG: % cover of perennial forbs 

and grass; Shrubs: % cover of shrubs; Tree: % cover of trees; DEM: elevation (m); Slope: slope 

of terrain; Anthro: distance (m) to residential areas; Wells: distance (m) to oil/gas wells; 

Powerlines: distance (m) to powerlines; Roads: distance (m) to roads.
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Figure 2.9. Non-metric multidimensional scaling of environmental dataa associated with discrete 

maps derived from logistic outputs of Maxent models created from scaled quail (Callipepla 

squamata) and northern bobwhite (Colinus virginianus) data in Beaver County, OK from 2013-

2015. Colors represent different map categories (purple: areas predicted unsuitable for both 

species; green: areas predicted suitable for only scaled quail; red: areas predicted suitable for 

both northern bobwhite and scaled quail; cyan: areas predicted suitable for only northern 

bobwhite). Years are represented by different shapes (circle: 2013; triangle: 2014; square: 2015). 

Environmental variables are represented in ordinal space by red text.  

aCRP: % cover of the Conservation Reserve Program; BG: % cover of bare ground; Litter: % 

cover of leaf litter; AFG: % cover of annual forbs and grass; PFG: % cover of perennial forbs 

and grass; Shrubs: % cover of shrubs; Tree: % cover of trees; DEM: elevation (m); Slope: slope 

of terrain; Anthro: distance (m) to residential areas; Wells: distance (m) to oil/gas wells; 

Powerlines: distance (m) to powerlines; Roads: distance (m) to roads.  
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OBJECTIVE 3 - Determine how mid-contract management of CRP influences movement 

patterns of LPCs 

METHODS 

Study site 

We conducted our study on a single LPC lek in north-central Beaver County, Oklahoma from 

April 1, 2014-January 31, 2015. The lek was located on an approximately 122 ha area which was 

enrolled in CRP in September, 2012. Specifically, the property was enrolled in the Conservation 

Practice 2 “Establishment of Permanent Native Grasses” with the purpose to reduce soil 

erosion/sedimentation, improve water quality, and enhance wildlife habitat 

(https://www.fsa.usda.gov/Internet/FSA_File/appendixb.pdf). As part of a landowner agreement 

with this Conservation Practice, managed grazing can be used as part of mid-contract 

management if grazing practices are performed according to the NRCS specifications and may 

not be grazed more than once every five years. During our study, managed grazing was 

implemented on July 2, 2014 and was the first time that managed grazing was permitted on this 

specific CRP pasture. A total of 30 cow/calf pairs were introduced and allowed to graze the 

pasture for a total of 84 days and all cattle were removed on September 24, 2014.  

Lesser Prairie-chicken capture and monitoring 

All capture and monitoring protocols were identical to those described in the methods of 

Objective 2.  

Lesser prairie-chicken movement  

We extracted a subset of LPC GPS location data associated with a larger project to assess if the 

introduction of managed grazing on CRP influenced LPC step lengths and habitat selection. To 

do this, we obtained location data associated with three different periods during our study: pre-

grazing (April 1, 2014-July 1, 2014), during grazing (July 2, 2014-September 24, 2014), and 

post-grazing (September 25, 2014-January 31, 2015). Once locations were assigned to grazing 

status, we created a step length in ArcGIS 10.2 between subsequent locations by estimating the 

Euclidean distance between locations. We then used the “isectlinerst” tool in the Geospatial 

Modeling Environment (GME; Spatial Ecology LLC, Marshfield, Wisconsin) to calculate the 

proportion of the step length that was within CRP. For each step length, we also determined 

whether or not the beginning and end of the step was in CRP (i.e., whether or not the individual 

started and/or ended its movement in CRP).  

To determine if patterns predicted from individuals associated with the grazed lek were directly 

representative of mid-contract management activities rather than seasonal differences in space 

use, we also extracted GPS locations from the rest of our LPC population within Beaver County 

(associated with two other leks) that did not encounter mid-contract management during our 

study period. As such, we considered this our control group, and all locations associated with 

these individuals were placed into the same grazing statuses and the same CRP information 

associated with step lengths and location data were extracted for comparisons.  

https://www.fsa.usda.gov/Internet/FSA_File/appendixb.pdf
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Vegetation monitoring 

To monitor the plant community response to managed grazing on the CRP pasture, we conducted 

vegetation surveys during the pre-, during-, and post-grazing periods. Specifically, vegetation 

surveys were conducted on June 25, 2014 (pre-grazing), September 24, 2014 (during-grazing), 

and January 19-21, 2015 (post-grazing). We randomly placed 30 sampling points within the 

grazed CRP pasture and recorded vegetation characteristics in the same 30 points across all three 

grazing periods to get repeated measures of the vegetation variables of interest. At each point, we 

placed a 0.5 m2 modified Daubenmire frame (Daubenmire 1959) at the center and in each 

cardinal direction 4 m away from the point center. Within each frame, we measured the percent 

cover of plant functional groups (grass, forbs, bare ground, and litter) as well as the percent 

cover of Old World bluestem (Bothriochloa ischaemum), a common non-native invasive grass 

that was planted in original signups for CRP (McIntyre and Thompson 2003). Additionally, we 

measured visual obstruction of vegetation by placing a Robel pole (Robel et al. 1970) at the 

center of each modified Daubenmire frame and estimating where the pole was completely 

obstructed from view to the nearest decimeter. Finally, we determined the overall vegetation 

height at the center of each frame using the Robel pole and measuring the maximum height of 

the vegetation to the nearest centimeter. For our analysis, all vegetation metrics were averaged 

across the five subsamples at each point to obtain a point average. 

Data analysis 

Movement analysis 

Approximately 34.7% and 14.5% of all step lengths in our treatment and control data sets, 

respectively, were less than 18 m in length, which was the approximate GPS error associated 

with the transmitters used during our analysis (Unger 2017). This led to a right-skewed 

distribution of our response variable that was also zero-inflated. To account for this distribution, 

we applied a hierarchical two-stage model (Zuur and Ieno 2016) which was comprised of a (1) 

binomial generalized linear mixed effects model (binomial GLMM) that included the entire data 

set and a (2) spatial error-truncated log-link Gamma mixed effects model, in which all step 

lengths shorter than our GPS error were removed from the data set (Taranu et al. 2017). 

Commonly referred to as a “hurdle” model, this approach is representative of a data set in which 

to observe an increase in the response variable (step length), a hurdle must first be crossed before 

an increase is observed (i.e., a movement being greater that the GPS error). This approach helps 

to address the potential for biased estimates of variance, standard errors, and other parameters 

associated with over-dispersed data (Moulton et al. 2002) and considers the binomial process 

(staying still or moving >18 m between locations) and the Gamma process (actually moving 

between GPS locations) separate because the predictors that determine whether or not an 

individual moves may be functionally different than predictors that determine the linear 

relationships of actual LPC movements (Taranu et al. 2017).  

Before running models, we determined if our predictive variables (proportion of CRP along a 

step, movement began in CRP, or movement ended in CRP, grazing status) were correlated using 

a Chi-squared test. For both datasets, the two variables associated with the start and end of the 
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movement (movement began in CRP and movement ended in CRP) were highly correlated 

(treatment data set: χ2 =1216.1, d.f.=1, P <0.001; control data set: χ2 =12680.1, d.f.=1, P <0.001) 

and thus we dropped the variable representing whether or not a movement started in CRP. We 

then started by building binomial GLMMs in which step length was our dependent variable and 

whether or not a movement ended in CRP and the grazing status were our independent variables. 

The proportion of CRP within the step length was not included in this stage of our analysis as 

there was perfect separation and models would not converge. We built models representing 

univariate, additive, and interactive effects of our independent variables using the package 

“lme4” in Program R and determined the best performing model by determining the Akaike 

Information Criterion adjusted for small sample sizes (AICc) value for each model and used a 

ΔAICc value of <2 (Burnham and Anderson 2002) to determine the most parsimonious model for 

explaining whether or not an individual moved between GPS locations. Once the most 

parsimonious model was determined, we assessed model fit by calculating the conditional R2 

value of the model using the package “MuMIn” in Program R. 

The procedures for building the Gamma GLMMs were identical to our binomial GLMMs except 

that only the subset of movements >18 m were included in the analysis and we included the 

additional independent variable representing the proportion of CRP along the step length. For 

both the binomial and Gamma GLMMs, we included a random effect which represented each 

individual in our population and used the “during-grazing” period as the reference period for the 

categorical variable of grazing status. Furthermore, all analysis procedures were carried out on 

both our treatment (individuals at the grazed CRP lek) and control (the rest of our sample size) 

data sets to determine local and population-level trends in step lengths across all three grazing 

statuses.  

Vegetation analysis 

To determine if vegetation changed across grazing periods at the grazed lek, we conducted a 

repeated-measures ANOVA with the corAR1 covariance structure for each functional cover 

class, vegetation height, and visual obstruction metrics. Each individual point was the unit of 

replication and was used as a random effect in our models. Significant changes in vegetation 

metrics were determined at the α = 0.05 level. 

Results 

Movement results 

From April 1, 2014-January 31, 2015, a total of 9,433 steps from eight LPC and 22,479 steps 

from 25 LPC were collected for the treatment and control data sets, respectively. Of these, 6,263 

steps from eight LPC, 2,266 steps from four LPC, and 904 steps from four LPC occurred in the 

treatment data set during the pre-, during-, and post- grazing periods, respectively. In the control 

data set, a total of 12,810 steps from 25 LPC, 7,433 steps from 13 LPC, and 2,236 steps from 11 

LPC occurred during the pre-, during-, and post-grazing periods, respectively.  

For both the treatment and control populations, step lengths were lowest in the during-grazing 

period and greatest in the post-grazing period (Figure 3.1). Other than the during-grazing period, 
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the control population had larger mean hourly step lengths than the LPC associated with the 

grazed CRP pasture. The most parsimonious model for the binomial GLMMs included the 

interactive effects of whether or not the subsequent location was in CRP (LocationInCRP) with 

the grazing status. This was the top model for both the treatment group (LocationInCRP*Pre-

grazing: β = -0.67, SE = 0.33, P = 0.04; LocationInCRP*Post-grazing: β = -13.38, SE = 3.15, P 

< 0.001; Conditional R2 = 0.24; Table 3.1) and the control group (LocationInCRP*Pre-grazing: β 

= -0.27, SE = 0.33, P = 0.004; LocationInCRP*Post-grazing: β = 0.23, SE = 0.13, P = 0.07; 

Conditional R2 = 0.22; Table 3.1). In the treatment group, the probability of moving was 

influenced by whether or not the subsequent location was in CRP for the pre-grazing (probability 

to move if subsequent location was in CRP: 0.75; probability to move if subsequent location was 

not in CRP: 0.87) and post-grazing (probability to move if subsequent location was in CRP: 

0.75; probability to move if subsequent location was not in CRP: 0.99) periods (Figure 3.2). 

Conversely, a subsequent location within CRP was only influential on the probability of moving 

for the control group during the pre-grazing period (probability to move if subsequent location 

was in CRP: 0.81; probability to move if subsequent location was not in CRP: 0.87).  

The most parsimonious model for the Gamma GLMMs included the interactive effects of 

whether or not a movement ended in CRP (StepEndCRP) and grazing period, an interactive 

effect with the proportion of a movement within CRP (ProportionCRP) and grazing period, and 

the interactive effect of ProportionCRP and StepEndCRP. This again was the top contributing for 

both the treatment group (StepEndCRP*Pre-grazing: β = 0.40, SE = 0.17, P = 0.02; 

StepEndCRP*Post-grazing: β = -1.12, SE = 0.26, P < 0.001; ProportionCRP*Pre-grazing: β = -

0.46, SE = 0.22, P = 0.04; ProportionCRP*Post-grazing: β = 2.44, SE = 0.33, P < 0.001; 

StepEndCRP*ProportionCRP: β = -3.04, SE = 0.19, P < 0.001; Conditional R2 = 0.32; Table 3.2) 

and the control group (StepEndCRP*Pre-grazing: β = 0.47, SE = 0.09, P <0.001; 

StepEndCRP*Post-grazing: β = 0.27, SE = 0.14, P = 0.6; ProportionCRP*Pre-grazing: β = -0.80, 

SE = 0.10, P <0.001; ProportionCRP*Post-grazing: β = -0.96, SE = 0.17, P <0.001; 

StepEndCRP*ProportionCRP: β = -4.70, SE = 0.10, P < 0.001; Conditional R2 = 0.30; Table 

3.2). Both models predicted greater mean hourly step lengths for the post-grazing period as the 

percentage of that step length increased in CRP coverage (Figure 3.3) although disparate 

relationships during the pre- and during-grazing periods, in which movements for the treatment 

group were shorter when a greater amount of the step length was within CRP (Figure 3.3). 

Similarly, post-grazing movements were greater for both treatment and control groups when the 

movement did not end in CRP (Figure 3.4). However, step lengths did not differ across grazing 

periods when a movement ended in CRP for the treatment group where-as there were differences 

for the control group (Figure 3.4). Finally, we found similar relationships across treatment and 

control groups with regards to the interaction between the proportion of the step length in CRP 

and whether or not the movement ended in CRP (Figure 3.5). The relationships across both 

groups indicated higher step lengths when moving between non-CRP and CRP, and smaller 

movements when staying within the same cover class category, suggesting large movements 

moving to and from CRP patches. 
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Table 3.1. Akaike’s Information Criterion adjusted for small sample size (AICc) model selection 

results for binomial generalized linear mixed effects models assessing the influence of the 

Conservation Reserve Program (CRP) on the probability of a lesser prairie-chicken 

(Tympanuchus pallidicintus) movement within Beaver County, OK from April 1, 2014-January 

31, 2015. 

Groupa Modelb AICc ΔAICc Kc Weightd Log Likelihood 

Treatment 

LocationInCR*GrazingStatus 9396.07 0 7 1 -4691.03 

LocationInCRP + GrazingStatus 9408.13 12.06 5 0 -4699.06 

GrazingStatus 9454.45 58.38 4 0 -4723.22 

LocationInCRP 9615.99 219.92 3 0 -4804.99 

Null 9651.74 255.67 2 0 -4823.87 

       

Control 

LocationInCRP*GrazingStatus 20205.1 0 7 1 -10095.33 

LocationInCRP + GrazingStatus 20222.3 17.25 5 0 -10106.16 

GrazingStatus 20270.5 65.41 4 0 -10131.24 

LocationInCRP 20352 146.96 3 0 -10173.01 

Null 20376.7 171.66 2 0 -10186.36 
aTreatment represents individuals associated with a lek in which mid-contract managed grazing 

occurred from July 2, 2014-September 24, 2014. Control represents all other individuals not 

associated with this lek and grazing event. 

bLocationInCRP indicates whether or not a subsequent hourly location was located in CRP. 

GrazingStatus represents pre-grazing (April 1, 2014-July 1, 2014), during-grazing (July 2, 2014-

September 24, 2014), and post-grazing (September 25, 2014-January 31, 2015) periods. 

cNumber of parameters 

dModel weight based on AICc values  
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Table 3.2. Akaike’s Information Criterion adjusted for small sample size (AICc) model selection 

results for Gamma distributed generalized linear mixed effects models assessing the influence of 

the Conservation Reserve Program (CRP) on lesser prairie-chicken (Tympanuchus pallidicintus) 

mean hourly step lengths (m) within Beaver County, OK from April 1, 2014-January 31, 2015. 

Groupa 
Modelb AICc ΔAICc Kc Weightd 

Log 

Likelihood 

Treatment StepEndCRP*GrazingStatus + 

ProportionCRP*GrazingStatus 

+ ProportionCRP*StepEndCRP 

87099.5 0.0 12.0 1.0 -43537.7 

ProportionCRP*StepEndCRP + 

GrazingStatus 
87176.1 76.7 8.0 0.0 -43580.0 

StepEndCRP*GrazingStatus + 

ProportionCRP*GrazingStatus 
87358.9 259.4 11.0 0.0 -43668.4 

StepEndCRP + ProportionCRP 

+ GrazingStatus 
87436.6 337.2 7.0 0.0 -43711.3 

StepEndCRP + ProportionCRP 57477.0 377.6 5.0 0.0 -43733.5 

StepEndCRP 57479.6 380.1 4.0 0.0 -43735.8 

ProportionCRP 87617.1 517.6 4.0 0.0 -43804.5 

Null 87624.3 524.8 3.0 0.0 -43809.1 

Control StepEndCRP*GrazingStatus + 

ProportionCRP*GrazingStatus 

+ ProportionCRP*StepEndCRP 

214507.0 0.0 12.0 1.0 -107241.5 

ProportionCRP*StepEndCRP + 

GrazingStatus 
214619.2 112.2 8.0 0.0 -107301.6 

StepEndCRP*GrazingStatus + 

ProportionCRP*GrazingStatus 
217757.4 3250.4 11.0 0.0 -108867.7 

StepEndCRP + ProportionCRP 

+ GrazingStatus 
217878.1 3371.1 7.0 0.0 -108932.0 

StepEndCRP + ProportionCRP 218391.4 3884.4 5.0 0.0 -109190.7 

ProportionCRP 218436.1 3929.1 4.0 0.0 -109214.1 

StepEndCRP 218682.2 4175.2 4.0 0.0 -109337.1 

Null 219100.8 4593.8 3.0 0.0 -109547.4 
aTreatment represents individuals associated with a lek in which mid-contract managed grazing 

occurred from July 2, 2014-September 24, 2014. Control represents all other individuals not 

associated with this lek and grazing event. 

bLocationInCRP indicates whether or not a subsequent hourly location was located in CRP. 

GrazingStatus represents pre-grazing (April 1, 2014-July 1, 2014), during-grazing (July 2, 2014-

September 24, 2014), and post-grazing (September 25, 2014-January 31, 2015) periods. 

cNumber of parameters 

dModel weight based on AICc values
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Figure 3.1. Mean hourly step lengths of lesser prairie-chickens (Tympanuchus pallidicintus) in 

Beaver County, OK from April 1, 2014-January 31, 2015. Panels represent (A) individuals that 

were associated with a lek that underwent mid-contract managed grazing within the 

Conservation Reserve Program (CRP) and (B) all other marked individuals not associated with 

the lek undergoing mid-contract grazing. Grazing statuses are represented in time by pre-grazing 

(April 1, 2014-July 1, 2014), during-grazing (July 2, 2014-September 24, 2014), and post-

grazing (September 25, 2014-January 31, 2015).   
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Figure 3.2. Probability of a lesser prairie-chicken (Tympanuchus pallidicintus) moving across 

subsequent hourly locations in relation to whether or not a subsequent location was within the 

Conservation Reserve Program (CRP) in Beaver County, OK. Panels represent (A) individuals 

that were associated with a lek that underwent mid-contract managed grazing within the CRP 

and (B) all other marked individuals not associated with the lek undergoing mid-contract 

grazing. Grazing statuses are represented in time by pre-grazing (April 1, 2014-July 1, 2014 

[green]), during-grazing (July 2, 2014-September 24, 2014 [red]), and post-grazing (September 

25, 2014-January 31, 2015 [blue]).  

  



56 
 

 

Figure 3.3. Mean hourly step length (m) of lesser prairie-chicken (Tympanuchus pallidicintus) 

movements in relation to whether or not the movement ended within the Conservation Reserve 

Program (CRP) in Beaver County, OK. Panels represent (A) individuals that were associated 

with a lek that underwent mid-contract managed grazing within the CRP and (B) all other 

marked individuals not associated with the lek undergoing mid-contract grazing. Grazing 

statuses are represented in time by pre-grazing (April 1, 2014-July 1, 2014 [green]), during-

grazing (July 2, 2014-September 24, 2014 [red]), and post-grazing (September 25, 2014-January 

31, 2015 [blue]). 
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Figure 3.4. Mean hourly step length (m) of lesser prairie-chicken (Tympanuchus pallidicintus) 

movements in relation to the proportion of the step length located within the Conservation 

Reserve Program (CRP) in Beaver County, OK. Panels represent (A) individuals that were 

associated with a lek that underwent mid-contract managed grazing within the CRP and (B) all 

other marked individuals not associated with the lek undergoing mid-contract grazing. Grazing 

statuses are represented in time by pre-grazing (April 1, 2014-July 1, 2014 [green]), during-

grazing (July 2, 2014-September 24, 2014 [red]), and post-grazing (September 25, 2014-January 

31, 2015 [blue]). Grey areas represent 95% confidence intervals. 
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Figure 3.5. Mean hourly step length (m) of lesser prairie-chicken (Tympanuchus pallidicintus) 

movements in relation to the proportion of the step length located within the Conservation 

Reserve Program (CRP) in Beaver County, OK. Panels represent (A) individuals that were 

associated with a lek that underwent mid-contract managed grazing within the CRP and (B) all 

other marked individuals not associated with the lek undergoing mid-contract grazing. The red 

lines indicate when the end of a movement was not located in CRP and the blue line represents 

when the end of a movement was in CRP. Grey areas represent 95% confidence intervals. 
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Vegetation response 

Based on our repeated-measures sampling, the only difference in vegetation metrics across the 

pre-, during-, and post-grazing period was associated with vegetation height (Table 3.3). 

Vegetation height was statistically lower during the post-grazing period when compared to the 

pre- and during-grazing periods (P < 0.001).  
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Table 3.3. Average values of vegetation metrics measured on a Conservation Reserve Program 

(CRP) pasture across 30 plots that experienced mid-contract managed grazing in Beaver County, 

OK. Grazing statuses are represented in time by pre-grazing (April 1, 2014-July 1, 2014), during-

grazing (July 2, 2014-September 24, 2014), and post-grazing (September 25, 2014-January 31, 

2015). Statistical differences were determined using a repeated-measures ANOVA with a 

corAR1 covariance structure. 

Vegetation metric 
Grazing 

status 
𝑥̅ SEa dfb F P 

% bare ground Pre 13.10 1.71 

59 1.39 0.24 During 11.71 1.12 

Post 15.33 1.32 

% forb Pre 6.17 1.39 

59 0.36 0.55 During 11.37 1.40 

Post 7.17 1.33 

% grass Pre 63.73 3.66 

59 1.37 0.25 During 65.90 2.50 

Post 60.00 2.60 

% leaf litter Pre 15.70 3.14 

59 0.04 0.83 During 9.97 0.88 

Post 16.30 1.33 

% Old World Bluestem Pre 1.30 1.01 

59 0.02 0.90 During 1.13 0.63 

Post 1.20 1.17 

Vegetation height (cm) Pre 52.05 2.71 

59 229.77 <0.001 During 52.33 2.93 

Post 19.56 1.07 

Visual obstruction (dm) Pre 1.82 0.13 

59 0.004 0.95 During 1.46 0.09 

Post 1.83 0.10 
aStandard error 

bDegrees of freedom 
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OBJECTIVE 4- Determine how CRP influences nighttime roost site selection and 

movement patterns to roost sites 

METHODS 

For this objective, our study site and LPC capturing and monitoring protocols were all identical 

to those described in Objective 2 and the data associated with this study was collected from April 

2013-May 2016. Once LPC GPS location data were obtained from our larger data set, we 

extracted locations that occurred after sunset and before sunrise of the next day to represent 

nocturnal roost locations. We then calculated the number of hours between the individual’s 

previous location and the roost location and removed locations that had > six hours between the 

previous location and the roost location (approximately 8.8% of the total data set). We did this to 

help prevent any spurious relationships in which too much time had occurred between the roost 

location and the previous location. We note that the minimum time between a roosting location 

and the previous location was four hours. 
 

Once locations were obtained, we created step lengths in ArcGIS 10.2 between the roost location 

and the previous location by estimating the Euclidean distance between locations. We then 

calculated the proportion of the step length that was within CRP. For each step length, we also 

determined whether or not the beginning and end of the step was in CRP (i.e., whether or not the 

individual started and/or ended its movement in CRP), similar to Objective 3. Finally, we 

visually assessed average hourly movement (m) patterns across all individuals annually and 

plotted these movement patterns to determine specific seasons related to changes in average 

movement patterns (Figure 4.1). Based on these patterns, we assigned roost locations into four 

specific seasons: Breeding (March 27-May 31), Summer (June 1-August 31), Fall Transition 

(September 1-November 30), and Winter (December 1-February 28).  



62 
 

 

 

Figure 4.1. Average hourly movement (m) distances of lesser prairie-chickens (Tympanuchus 

pallidicintus) from April 2013-May 2016 in Beaver County, OK. Number of individuals are 

represented by the dashed line and standard errors are presented by vertical lines for movement 

distances.  
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Environmental data 

Landcover data 

We used a vegetation classification dataset created through the Oklahoma ecological systems 

mapping project which was created using an object-based classification approach and verified 

via grouth-truthing. Landsat Thematic Mapper satellite data were used alongside the ground-

truthed sample locations to help categorize landcover types through a decision tree classification 

approach, resulting in a 30 m spatial grain for landcover data. Then, an image object-based 

classification approach was used to resample the 30 m landcover data to a 10 m grain through the 

use of a National Agriculture Imagery Program image mosaic. A more detailed explanation of 

the process involved with creating this landcover data set can be found in Diamond and Elliot 

(2015).  

 

After initial assessment of the Oklahoma ecological systems mapping data, we chose to simplify 

the vegetation categories into six general cover classes: croplands, mixed grass prairie, planted 

grass (typically Old World bluestem), barren land, ruderal shrub, and shortgrass prairie. 

Additionally, we incorporated a spatially explicit CRP layer into the landcover raster which 

included all CRP land enrolled as of January of 2016. This layer was obtained through the 

Oklahoma Farm Service Agency (FSA). We allowed the CRP layer to take precedence over 

landcover data associated with the Oklahoma ecological systems mapping project such that CRP 

because its own cover class, resulting in a total of seven landcover classes. Finally, we converted 

our landcover data into distance based rasters using the Euclidian Distance tool in ArcGIS 10.2 

to create distance (m) to each vegetation type.  

 

Anthropogenic data 

We created distance-based rasters to multiple anthropogenic features. The anthropogenic rasters 

included in our analysis were distance to: active oil/gas wells, power lines, residential areas, and 

roads. We obtained the location of oil/gas wells, and power lines, from the Western Associated 

of Fish and Wildlife Agencies. We obtained a roads layer through the USDA GeoSpatial Data 

Gateway to access the TIGER shapefile depicting primary and secondary roads throughout the 

county. We obtained residential area data by hand mapping these locations in ArcGIS 10.2 using 

2013 USDA NAIP imagery within Beavery county. Once all spatially explicit anthropogenic 

feature data were obtained, we created a Euclidean distance-based raster for each feature type at 

a 30 m resolution to match the spatial grain of the RAP rasters.  

 

Finally, to assess potential novel anthropogenic influences distinct to nighttime disturbances, we 

incorporated a visible infrared imaging radiometer suite (VIIRS) data set which images nighttime 

light pollution globally at a 742 m nominal spatial resoltuion and is provided by the National 

Oceanic and Atmospheric Administration (NOAA; https://sos.noaa.gov/datasets/nighttime-

lights/).  

 

Other variables 

The only other environmental variable we included in our analysis was the distance to a LPC’s 

lek of capture (m). This resulted in a total of 14 environmental variables and all environmental 

variables (except the nighttime lights layer) were resampled at a grain of 36 m to represent the 

~18 m error associated with our GPS transmitters.  
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Data analysis 

Roost site habitat selection 

We used the proportional hazard regression (PHREG) procedure in SAS (SAS 2000) to estimate 

parameters associated with roost site selection and to produce AICc values to determine the most 

parsimonious model with models having a ΔAICc <2 being considered plausible models. This 

procedure allowed us to use discrete choice models, which allow for availability of resources to 

change over time (Ben-Akiva and Lerman 1985, Cooper and Millspaguh 1999). To determine 

available resources relative to LPC, we created a circle buffer around each individual roost 

location with a radius equal to 1,010 m, which represented double the largest average movement 

made to or from a roost site across seasons. Once buffers were created, we created five random 

points within each location buffer and considered these points to be available yet not used for 

roost locations. The five random locations and the one used location represented a “choice set”, 

which is considered an individual sample and is equal to the number of roost locations within our 

data set (Cooper and Millspaugh 1999). Within all models, we included an error term accounting 

for individual birds.  

 

All choice sets were match with the 14 spatially explicit environmental variables described 

previously. To meet the assumption of the discrete choice model, we conducted a correlation 

analysis in SAS (SAS 2000) and removed any variables with a Pearson’s correlation coefficient 

of |r|>0.70. No variables were highly correlated so we retained the original set of environmental 

variables.  
 

We built an initial model suite assessing the interaction between season and all environmental 

variables within our data set. Thus, our initial model suite contain14 interactive models with an 

additional null model (15 total models). We simplified the complexity of our models in this 

initial suite because including a large number of variable in a discrete choice model could cause 

a bias and unstable parameter estimation (McCracken et al. 1998). We then built a post-hoc 

model suite assessing semi-global models associated with comparing roost site selection with 

vegetation-only variables versus anthropogenic-only variables. This was to determine if roost site 

selection was driven more by existing vegetation on the landscape or by anthropogenic 

disturbances. Finally, we used a likelihood ratio test to assess the overall model fit by comparing 

the log-lieklihoods between the null model and our most parsimonious model (McCullagh and 

Nelder 1989).  

 

Movement to roost analysis 

Similar to Objective 3, we used a Gamma distributed generalized linear mixed effects model 

(GLMM) to determine if CRP was influencing the step length between roost sites and 

movements to the roost sites (previous location before a roosting location). Because we were 

ultimately interested in movement patterns, we eliminated any data points in which an individual 

did not move to the roost site prior to sunset (~38.4% of locations). Two of our explanatory 

variables (whether or not the movement to the roost site started in CRP and whether or not the 

movement to the roost site ended in CRP) were highly correlated (χ2 = 8,806, df = 1, P < 0.001), 

thus we retained the variable indicating whether or not the movement to the roost site ended in 

CRP, as the ultimately represented whether or not a roost site was located in CRP, coinciding 

with our resource selection analysis.  
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We built Gamma distributed GLMMs in which step length to the roost site was our dependent 

variable and whether or not a movement ended in CRP and the proportion of CRP within the step 

length were our independent variables. We built models representing univariate, additive, and 

interactive effects of our independent variables using the package “lme4” in Program R and 

determined the best performing model by determining the Akaike Information Criterion adjusted 

for small sample sizes (AICc) value for each model and used a ΔAICc value of <2 (Burnham and 

Anderson 2002) to determine the most parsimonious model for explaining whether or not an 

individual moved between GPS locations.  

 

RESULTS 

From April 2013-May 2016, we captured a total of 106 LPC (72 males, 34 females) resulting in 

a total of 219,322 GPS locations. Of these, we obtained a total of 36,201 nocturnal locations 

from 91 LPC. We also obtained a total of 15,076 movements to the roost locations from 91 LPC. 

Nocturnal roost sample sizes were greatest during the breeding season and lowest during the 

winter season (Figure 4.2). On average, movements off of roost sites were further when 

compared to movements to the roost site or diurnal movement rates (Figure 4.3). Similarly, 

besides the winter season, movements to the roost site were greater than diurnal movement 

patterns when compared within seasons.  

 

Discrete choice analysis 

 

Based on model selection results for our discrete choice models, the best model explaining 

resource selection for LPC roost sites included an interaction between season and shortgrass 

prairie (Table 4.1). This was the most parsimonious model and no other models were considered 

plausible. Based on this model, avoidance for roost sites in shortgrass prairie vegetation was 

strongest during the summer season (β = 0.0019, 95% CI = 0.0015-0.0024, P < 0.001) and 

during the winter season (β = 0.0045, CI = -0.0042-0.0048, P < 0.001). We note that since these 

are distance-based variables, a positive β indicates an avoidance of this variable. When assessing 

global models comparing a model with only vegetation variables to a model with only 

anthropogenic variables, model selection results indicated that vegetation was more important to 

roost site selection than the influence of anthropogenic features (Table 4.2). Of the vegetation 

variables influencing roost site selection, LPC located roost sites closer to CRP, their lek of 

capture, croplands, and mixed grass prairie than would be expected at random (Table 4.3). Of 

these, CRP was the most influential variable influencing roost site selection. Conversely, 

individuals located roost sites further from barren lands, shrubs, and shortgrass prairie than 

would be expected at random (Table 4.3). 

 

Movement to roost analysis 

 

Two models were considered plausible models in explaining LPC movement to roost sites and 

were contained with a ΔAICc <2 (Table 4.4). Within these two models, the variables indicating 

the proportion of CRP along the step length to the roost site (ProportionCRP) and whether or not 

the roost site was in CRP (RoostInCRP) were both included in the top two models. The sex of an 

individual was also included in the second best support model, but was not considered significant 

as its β estimate had a confidence interval overlapping 0 (β = 0.21, SE = 0.18, P = 0.23). 
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Parameter estimates for the two CRP variables indicated that as movements to the roost site 

contained more CRP along the step length, movements decreased (β = -1.01, SE = 0.06, P 

<0.001; Figure 4.4) whereas movements to the roost were greater when a roost site was in CRP 

as opposed to outside CRP (β = 0.57, SE = 0.05, P <0.001; Figure 4.5). This suggests that 

individuals located outside of CRP before sunset are moving longer distances to get to roost sites 

in CRP, but if they were already located in CRP before moving to the roost site (i.e., 100% of 

their movement to the roost was in CRP), they moved significantly less to get to their roost 

within CRP. 
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Table 4.1. Akaike’s Information Criterion adjusted for small sample size (AICc) model 

selection results for discrete choice models assessing the influence of interactions between 

season and vegetation/anthropogenic variables on the roost site selection lesser prairie-

chickens (Tympanuchus pallidicintus) within Beaver County, OK from April 2014-May 

2016. 

Model AICc ΔAICc Ka Weightb 

Season*Shortgrass 53845.7 0 4 1 

Season*LekDistance 55156.7 1311 4 0 

Season*Powerline 56511.1 2665.4 4 0 

Season*CRP 56767.3 2921.61 4 0 

Season*Roads 56956.6 3110.91 4 0 

Season*Shrub 58077.3 4231.6 4 0 

Season*PlantedGrass 59320.9 5475.2 4 0 

Season*MixedGrass 59520.5 5674.81 4 0 

Season*NightLights 59591.7 5745.99 4 0 

Season*Wells 59607.9 5762.19 4 0 

Season*Crops 59327.3 5781.54 4 0 

Season*Residential 59632.3 5786.6 4 0 

Season*Barren 59635.6 5789.87 4 0 

Null 59683.5 5837.78 1 0 

aNumber of parameters 

bModel weight based on AICc   
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Table 4.2. Akaike’s Information Criterion adjusted for small sample size (AICc) model 

selection results for discrete choice models assessing the influence of a vegetation global 

model (only containing vegetation-related variables) and an anthropogenic global model 

(only containing anthropogenic-related variables) on the roost site selection lesser prairie-

chickens (Tympanuchus pallidicintus) within Beaver County, OK from April 2014-May 

2016. 

Model AICc ΔAICc Ka Weightsb 

Vegetation Only 49396.9 0 8 1 

Anthropogenic Only 51524.3 2127.33 7 0 

Null 59683.5 10286.6 1 0 

aNumber of parameters 

bModel weight based on AICc   
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Table 4.3. Parameter estimates, 95% confidence intervals, and associated significance values 

for variables within the vegetation global model as calculated from a discrete choice model 

assessing the influence of a vegetation global model on the roost site selection lesser prairie-

chickens (Tympanuchus pallidicintus) within Beaver County, OK from April 2014-May 

2016. 

 

Model 
Variable β 

Lower 95% 

CI 

Upper 95% 

CI 
P 

Vegetation Only CRP -0.0023 -0.0025 -0.0022 <0.0001 

Lek 

Distance 
-0.0012 -0.0012 -0.0011 <0.0001 

Cropland -0.0007 -0.0008 -0.0006 <0.0001 

Mixed 

grass 
-0.0001 -0.0002 -0.0001 0.0159 

Planted 

grass 
0 -0.0001 0.0002 0.5344 

Barren 0.0003 0.0003 0.0004 <0.0001 

Ruderal 

shrub 
0.0005 0.0004 0.0005 <0.0001 

Shortgrass 0.0045 0.0043 0.0046 <0.0001 
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Table 4.4. Akaike’s Information Criterion adjusted for small sample size (AICc) model 

selection results for Gamma distributed GLMMs assessing the influence of CRP on the 

movement lengths of movements to roost sites for lesser prairie-chickens (Tympanuchus 

pallidicintus) within Beaver County, OK from April 2014-May 2016. 

Modela AICc ΔAICc Kb Weightc Log 

Likelihood 

ProportionCRP + 

RoostInCRP 
108522.0 0.0 5.0 0.6 -54256.0 

Sex + 

ProportionCRP + 

RoostInCRP 

108522.6 0.6 6.0 0.4 -54255.3 

ProportionCRP 108674.7 152.6 4.0 0.0 -5433.3 

Sex + 

ProportionCRP 
108675.3 153.2 5.0 0.0 -54332.6 

Null 108834.9 312.9 3.0 0.0 -54414.5 

Sex 108835.7 313.7 4.0 0.0 -54413.8 

RoostInCRP 108835.9 313.8 4.0 0.0 -54413.9 

Sex + RoostInCRP 108836.7 314.6 5.0 0.0 -54413.3 

aVariables represent: ProportionCRP: the proportion of CRP along the step length of the 

movement to a roost site; RoostInCRP: whether or not the end of the movement to the 

roost, and additionally, the roost site, are in CRP; Sex: sex of the individual 

bNumber of parameters 

c Model weight based on AICc 
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Figure 4.2. Number of lesser prairie-chickens (Tympanuchus pallidicintus) contributing 

to nocturnal roost site selection samples by season from April 2013-May 2016 in Beaver 

County, OK. Colors indicate if individual moved more or less than 36 m, which was 

double our average GPS error.   
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Figure 4.3. Average movement of lesser prairie-chickens (Tympanuchus pallidicintus) to 

and from roost sites as well as their average diurnal movements by season in Beaver 

County, OK from April 2013-May 2016. Numbers represent maximum average distances 

observed and standard error bars are presented. 
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Figure 4.4. Relationship between the proportion of a lesser prairie chicken’s 

(Tympanuchus pallidicintus) movement to a roost site contained within CRP and the 

mean hourly step length of the movement to a roost site as determined from a GLMM. 

Data are from individuals in Beaver County, OK from April 2013-May 2016.
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Figure 4.5. Relationship between whether or not a roost site of a lesser prairie chicken 

(Tympanuchus pallidicintus) was located in CRP and the mean hourly step length of the 

movement to a roost site as determined from a GLMM. Data are from individuals in 

Beaver County, OK from April 2013-May 2016. 
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DISCUSSION AND SUMMARY 

Our research provides a multi-spatial-scale assessment of the importance of CRP 

enrollment on the LPC distribution, third-order (Johnson 1980) habitat use, and 

movement patterns through a collation of disparate data sets. Barring our species 

distribution model built entirely with occurrences having a roadside bias (i.e., the eBird 

data sets), all other models indicated a positive relationship with the presence of CRP and 

spatial patterns for the LPC across all examined scales, indicating this relationship was 

scale-invariant (Gisiger 2001) and that CRP was a primary driver of space use (Northrup 

et al. 2016). Our results, along with a growing body of literature, suggest that patches of 

CRP are playing a key role in maintaining useable space throughout the LPC distribution 

by maintaining grassland connectivity (Tanner and Fuhlendorf 2018) for a species that 

requires large spatial extents of habitat. Furthermore, by incorporating temporal 

variability associated with drought conditions into our distribution models, we illustrate 

that patches of CRP maintain their importance as environmental conditions and 

vegetation cover varies. Within the LPC distribution, the CRP primarily functions to 

establish permanent grassland vegetation on former croplands (Stubbs 2014), and 

population resilience of the LPC has been shown to decrease as grassland cover decreases 

and landscapes exceed 9.6% cropland during drought conditions (Ross et al. 2016). By 

incorporating spatially explicit CRP data into our temporal species distribution models, 

our results corroborate the important contributions that the CRP plays in influencing 

environmental suitability during drought conditions, which are expected to increase 

within the Central Plains in future decades (Cook et al. 2015).  

Conversely, when assessing the impact of anthropogenic features to spatial patterns of 

LPCs across spatial scales, we detected scale-specific variation in the importance of these 

features. At a broad grain (~5 km) across the species’ distribution, we found that, 

variables associated with anthropogenic features (i.e., oil/gas well density and human 

footprint) consistently exhibited a negative relationship with the probability of LPC 

environmental suitability (Figures 1.4-1.6). Though these variables contributed <16% to 

model accuracy gain, the consistency of the relationships corroborate the findings of 

other local studies within the LPC distribution that have reported negative effects of oil 

and gas developments (Pitman et al. 2006, Beck 2009, Timmer et al. 2014, Sullins et al. 

2019). However, at finer spatial scales (30 m grain and county-level spatial extent), we 

found that CRP and the cover of functional plant groups contributed more to 

environmental suitability than did the distance from anthropogenic features (Table 2.3). 

Avoidance of anthropogenic features may not be an absolute pattern for the LPC and can 

vary by region based on feature densities (Sullins et al. 2019) and/or by life-history stages 

of individuals (Lautenbach et al. 2017). Furthermore, access to habitat provided by CRP 

may outweigh the negative influences of anthropogenic features at lower densities 

(Plumb et al. 2019), a pattern that was evident in our smaller-scale distribution models 

and through our roost site selection analysis.  
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Assessing species distribution models with disparate data sets could highlight the 

inherent complexities of species’ specific relationships with environmental variables 

across space. For instance, the relationship between CRP and the probability of LPC 

environmental suitability was opposite across the aerial survey/joint models when 

compared to the eBird model (Figures 1.4-1.6). Such a paradox could be related to the 

fact that the effects of CRP on the probability of LPC environmental suitability are not 

uniform across their distribution, which may be attributed to variation in regional 

availability of CRP, or to regional variation in the quality of CRP (i.e., planted in natives 

versus non-native species). Land enrolled in the CRP has been identified as critical to 

LPC habitat throughout portions of their distribution (Jarnevich and Laubhan 2011; 

Spencer et al. 2017; Sullins et al. 2018). Yet, this relationship likely varies based on the 

spatial scale and the landscape matrix that surrounds CRP land cover (Fuhlendorf et al. 

2002; Sullins et al. 2018). Furthermore, such a discrepancy in the relationship between 

CRP and LPC suitability may arise due to differences in detection probabilities and 

sampling effort across occurrence datasets (Higa et al. 2015) in which roadside 

observations in the eBird dataset may have decreased detection probabilities due to visual 

obstruction associated with CRP vegetation. Considerations regarding detection 

probabilities across datasets should be considered when making interpretations. 

Cover of CRP can play an important role in providing usable space for a plethora of 

species (Luttschwager and Higgins 1992, Herkert 1998, Hagen et al. 2016) yet these 

relationships are likely to vary based on the Conservation Practice of each CRP patch, the 

surrounding matrix in which the CRP is located, and the configuration of CRP relative to 

the rest of the landscape (Batáry et al. 2011). The results from county-level species 

distribution models suggested that CRP was influential in determining environmental 

suitability for the LPC, but not for northern bobwhite or scaled quail. Though bobwhite 

have been shown to use CRP patches in other parts of its distribution (Osborne et al. 

2012), it is likely that we did not detect a similar pattern as this species was primarily 

restricted to shrublands, such as sand sagebrush (Artemesia filifolia) vegetation 

communities associated with the Beaver River, which has a terrain not conducive to 

establishing croplands and thus was less likely to have CRP enrollment from past land 

use practices. Similarly, environmental suitability for scaled quail was not influenced by 

CRP patches relative to other environmental variables, a pattern that has been suggested 

before (Schemnitz 1993). Despite this, we did estimate areas of range overlap which 

fluctuated with drought conditions, with greater amounts of range overlap occurring for 

both northern bobwhite/LPC and scaled quail/LPC during 2013 (8.5% and 33.5%, 

respectively [Figures 2.2 and 2.3]) when compared to 2015 (4% and 5%, respectively 

[Figures 2.2 and 2.3]). This may suggest behavioral plasticity between these three 

Galliformes relative to their potential range overlap and the environmental conditions and 

the associated vegetation cover on the landscape.  

Beyond the influence of Conservation Practices and spatial organization of CRP patches 

on potential wildlife benefits, discrete disturbance events (associated with mid-contract 

management) may also influence how LPCs benefit from CRP patches. Indeed, the 



 

77 
 

 

implementation of mid-contract management practices has been shown to provide 

benefits for many species using CRP patches (Negus et al. 2010, Osborne et al. 2012). 

Grazing has been an ecological process that LPCs evolved with (Copelin 1963), though 

changes in grazing systems and stocking rates can negatively influence usable space for 

individuals (Bailey et al. 2000, Hagen et al. 2004). Through an assessment of movement 

patterns (a fundamental characteristic of organisms that are influenced by multiple 

processes across scales [Nathan et al. 2008]) of LPC associated with a lek within a CRP 

patch experiencing managed grazing during mid-contract management, we saw no direct 

evidence of this mid-contract management on movement patterns. Similarly, we found 

little change in vegetation conditions during this managed grazing, with only vegetation 

height being significantly different post-grazing. Though movement patterns were greater 

after managed grazing, this same pattern was seen with our control population not 

associated with this grazing event (Figure 3.1). Moreover, though we estimated a higher 

probability of moving during the managed grazing period (Figure 3.2), this same pattern 

was observed in our control population. When assessing how much of a movement was 

included in the CRP patch experiencing mid-contract grazing, we estimated statistically 

similar step lengths when 100% of the movement was in the CRP patch being grazed 

(Figure 3.4), and individuals had lower movement when the movement both started and 

ended in the grazed CRP patch, similar to our control population (Figure 3.5). Our study 

provides evidence that managed grazing that is regulated by the NRCS did not 

significantly alter movement patterns of LPC using the grazed CRP relative to the rest of 

the population, and that actual differences in movement patterns across our “grazing 

periods” was likely a reflection of seasonal changes (Figure 4.1).  

Finally, our research provides the first assessment of how CRP influences nocturnal roost 

site selection for LPCs, an understudied aspect of their life-history (Lima et al. 2005). 

Based on global models, vegetation was more important in determining roost site 

selection than compared to anthropogenic features (Table 4.2). Off all vegetation 

categories included in our analysis, CRP was the most influential, in which LPCs selected 

roost sites closer to CRP patches than would be expected at random. Furthermore, CRP 

influenced that movements of LPCs to roost site locations based on their last recorded 

location before sunset. Specifically, LPCs move further to select roost sites in CRP if 

their previous location was not located in CRP, yet movements to roost sites in CRP 

significantly decrease if the individual was already located in CRP before sunset. 

Conversely, individuals avoided vegetation types associated with low vegetation and 

shrubs (Table 4.3), indicating that roost site selection is driven by vegetation structure 

characteristic of mixed grass prairies and CRP. This is consistent with the limited 

information previously published on roost site selection (Davis et al. 1979, Riley et al. 

1993), however our research is the first to illustrate how CRP changes movement patterns 

to nocturnal roost sites. Considering that all animals must select sites to rest and may 

spend a large portion of their lives doing so (Lima et al. 2005), understanding what 

influences the movements of LPC to these important sites during a vulnerable period in 

an organism’s life in critical to conservation, particularly when considering energetics 

associated with longer versus shorter movements (Halsey 2016). By implementing CRP 
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enrollment onto a landscape, an increase for both diurnal and nocturnal usable space may 

result for LPCs. 

CONSERVATION RECOMMENDATIONS AND FUTURE RESEARCH 

OPPORTUNITIES 

Below we have outlined conservation recommendations and the future research needs 

relating to the implementation of CRP and how it influences LPC ecology across multiple 

scales. This is not an exhaustive list and we attempt to provide recommendations without 

over-extrapolating the results provided in this report. 

• Broadly, we provide evidence on the functionality of CRP enrollment as a way to 

maintain large areas of grasslands and promote grassland connectivity that 

directly influences the habitat suitability for the LPC. Efforts to maintain and 

promote CRP enrollment in areas where grasslands are lacking should be 

promoted. 

• Though CRP has a direct influence on habitat suitability of the LPC, it is clear 

that heterogeneity of land cover types will likely benefit the LPC more than a 

homogenous landscape of CRP. This was evident based on niche models created 

using aerial survey data and a combination of aerial survey and eBird data, in 

which the probability of suitability for LPCs within a 25km2 matrix increased by 

<25% when this area increased from 0% CRP to 100% CRP. Thus, there is likely 

a threshold in which there are potentially diminishing returns on more CRP 

coverage within the LPC distribution, and this warrants further research to explore 

where a threshold may exist.  

• With further regard to our species distribution models, we highlight the potential 

that open source citizen science data has for providing supplemental data for 

distribution models of the LPC. However, we note that these data must be vetted 

carefully if they are to be included in conservation decisions through pre-

modelling filtering protocols and assessment of spatial and temporal biases. 

Nonetheless, these data can be collated with existing standardized data to provide 

a low-cost supplement that provides spatially unique data for distribution models. 

• The use of northern bobwhite and scaled quail management as an umbrella 

approach to help benefit LPC conservation is likely not warranted. Disparity in 

space use estimated through ecological niche models suggests that areas that 

benefit LPCs are more often spatially unique when compared to northern 

bobwhite and scaled quail. 

• Though our research related to mid-contract management was restricted to a 

single lekking site and represents only one type of management practice 

(managed grazing), our results suggest that the mid-contract management 

associated with individuals in our study did not influence LPC movement patterns 

during this practice. This potentially highlights that managers and conservation 

scientists should think about habitat quantity rather than quality or composition in 

human influenced matrices within the LPC distribution. However, our sample size 
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is limited and future research should explore how the timing and specific mid-

contract management practice may change these relationships. 

• CRP plays an important role in influencing the distance a LPC will travel to select 

a roost site. Furthermore, we show that individuals will rarely travel >0.5 km to or 

from a roost site throughout the year. Given these parameters, considerations 

should be made in the spatial arrangement and nearest neighbors of CRP patches 

if they are to provide maximum benefits for roost sites. Future research should 

examine demographic parameters (i.e., survival) associated with roost site 

selection both within and outside of CRP patches to better understand if one patch 

type functions as a potential sink. 

• A better understanding of the optimal spatial arrangement of CRP for LPCs is 

needed in future research endeavors. We propose addressing this need through the 

integrated use of movement ecology theory (through GPS locations) and agent-

based modeling, which will help highlight the optimum arrangement and patch 

size of CRP for the benefit of LPC populations. 
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